This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A301570 #7 Mar 24 2018 19:10:23 %S A301570 1,0,0,0,1,1,0,0,0,2,1,0,0,1,3,2,0,0,2,5,2,0,0,4,7,3,0,1,7,10,4,0,2, %T A301570 11,14,5,0,4,17,19,6,0,8,25,25,8,1,13,36,33,10,2,21,50,43,12,4,33,69, %U A301570 55,15,8,49,93,70,18,14,71,124,88,23,23,102,163,110,29,37 %N A301570 Expansion of Product_{k>=1} (1 + x^(5*k))*(1 + x^(5*k-1)). %C A301570 Number of partitions of n into distinct parts congruent to 0 or 4 mod 5. %H A301570 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A301570 G.f.: Product_{k>=2} (1 + x^A047208(k)). %F A301570 a(n) ~ exp(Pi*sqrt(2*n/15)) / (2^(41/20) * 15^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Mar 24 2018 %e A301570 a(14) = 3 because we have [14], [10, 4] and [9, 5]. %t A301570 nmax = 76; CoefficientList[Series[Product[(1 + x^(5 k)) (1 + x^(5 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] %t A301570 nmax = 76; CoefficientList[Series[x QPochhammer[-1, x^5] QPochhammer[-x^(-1), x^5]/(2 (1 + x)), {x, 0, nmax}], x] %t A301570 nmax = 76; CoefficientList[Series[Product[(1 + Boole[MemberQ[{0, 4}, Mod[k, 5]]] x^k), {k, 1, nmax}], {x, 0, nmax}], x] %Y A301570 Cf. A035370, A036820, A047208, A203776, A219607, A281243, A301562, A301563, A301564, A301565, A301567, A301568, A301569. %K A301570 nonn %O A301570 0,10 %A A301570 _Ilya Gutkovskiy_, Mar 23 2018