A301573 Distance to nearest perfect power n^k, k>=2 (A001597).
1, 0, 1, 1, 0, 1, 2, 1, 0, 0, 1, 2, 3, 3, 2, 1, 0, 1, 2, 3, 4, 4, 3, 2, 1, 0, 1, 0, 1, 2, 2, 1, 0, 1, 2, 1, 0, 1, 2, 3, 4, 5, 6, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
Offset: 0
Keywords
Examples
a(20) = a(21) = 4 because 16 is the nearest perfect power to 20 and 25 is the nearest perfect power to 21 (20 - 16 = 25 - 21 = 4). a(36) = 0 because 36 is a square.
Links
Programs
-
PARI
isA001597(n) = {ispower(n) || n==1} a(n) = {my(k=0); while(!isA001597(n+k) && !isA001597(n-k), k++); k;}
-
Python
from itertools import count from sympy import perfect_power def A301573(n): return next(k for k in count(0) if perfect_power(n+k) or perfect_power(n-k) or n-k==1 or n+k==1) # Chai Wah Wu, Nov 12 2023
Formula
a(n) = 0 iff n belongs to A001597.
Comments