cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301594 Expansion of Product_{k>=1} (1 + x^k)^A001615(k), where A001615 is the Dedekind psi function.

Original entry on oeis.org

1, 1, 3, 7, 13, 27, 55, 99, 185, 341, 604, 1064, 1863, 3181, 5411, 9123, 15167, 25051, 41083, 66715, 107703, 172735, 275034, 435484, 685753, 1073481, 1672160, 2592070, 3998278, 6140196, 9389302, 14296376, 21682534, 32759202, 49308812, 73956692, 110545113
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 24 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Exp[Sum[-(-1)^j * Sum[k*Sum[MoebiusMu[d]^2 / d, {d, Divisors @ k}] * x^(j*k) / j, {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 31 2018 *)

Formula

a(n) ~ exp(3^(5/3) * (5*Zeta(3))^(1/3) * n^(2/3) / (2^(4/3) * Pi^(2/3)) - Pi^(2/3) * n^(1/3) / (2^(5/3) * 3^(2/3) * (5*Zeta(3))^(1/3)) - Pi^2 / (2160 * Zeta(3))) * (5*Zeta(3))^(1/6) / (2^(3/4) * 3^(1/6) * Pi^(5/6) * n^(2/3)).