A301594 Expansion of Product_{k>=1} (1 + x^k)^A001615(k), where A001615 is the Dedekind psi function.
1, 1, 3, 7, 13, 27, 55, 99, 185, 341, 604, 1064, 1863, 3181, 5411, 9123, 15167, 25051, 41083, 66715, 107703, 172735, 275034, 435484, 685753, 1073481, 1672160, 2592070, 3998278, 6140196, 9389302, 14296376, 21682534, 32759202, 49308812, 73956692, 110545113
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
nmax = 40; CoefficientList[Series[Exp[Sum[-(-1)^j * Sum[k*Sum[MoebiusMu[d]^2 / d, {d, Divisors @ k}] * x^(j*k) / j, {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 31 2018 *)
Formula
a(n) ~ exp(3^(5/3) * (5*Zeta(3))^(1/3) * n^(2/3) / (2^(4/3) * Pi^(2/3)) - Pi^(2/3) * n^(1/3) / (2^(5/3) * 3^(2/3) * (5*Zeta(3))^(1/3)) - Pi^2 / (2160 * Zeta(3))) * (5*Zeta(3))^(1/6) / (2^(3/4) * 3^(1/6) * Pi^(5/6) * n^(2/3)).