This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A301595 #18 May 19 2021 05:14:19 %S A301595 1,1,4,10,34,80,254,604,1785,4370,11986,29286,80355,193137,505952, %T A301595 1239348,3181970,7686199,19520906,46931241,117334784,282021070, %U A301595 693721166,1659075192,4063164983,9651686516,23347635094,55405326513,133021397071,313842472333,749299686508 %N A301595 Number of thrice-partitions of n. %C A301595 A thrice-partition of n is a choice of a twice-partition of each part in a partition of n. Thrice-partitions correspond to intervals in the lattice form of the multiorder of integer partitions. %H A301595 Alois P. Heinz, <a href="/A301595/b301595.txt">Table of n, a(n) for n = 0..3244</a> %H A301595 Gus Wiseman, <a href="/A301595/a301595.png">The a(4) = 34 thrice-partitions of 4.</a> %F A301595 O.g.f.: Product_{n > 0} 1/(1 - A063834(n) x^n). %e A301595 The a(3) = 10 thrice-partitions: %e A301595 ((3)), ((21)), ((111)), ((2)(1)), ((11)(1)), ((1)(1)(1)), %e A301595 ((2))((1)), ((11))((1)), ((1)(1))((1)), %e A301595 ((1))((1))((1)). %p A301595 b:= proc(n, i, k) option remember; `if`(n=0 or k=0 or i=1, %p A301595 1, b(n, i-1, k)+b(i$2, k-1)*b(n-i, min(n-i, i), k)) %p A301595 end: %p A301595 a:= n-> b(n$2, 3): %p A301595 seq(a(n), n=0..35); # _Alois P. Heinz_, Jan 25 2019 %t A301595 twie[n_]:=Sum[Times@@PartitionsP/@ptn,{ptn,IntegerPartitions[n]}]; %t A301595 thrie[n_]:=Sum[Times@@twie/@ptn,{ptn,IntegerPartitions[n]}]; %t A301595 Array[thrie,30] %t A301595 (* Second program: *) %t A301595 b[n_, i_, k_] := b[n, i, k] = If[n == 0 || k == 0 || i == 1, %t A301595 1, b[n, i - 1, k] + b[i, i, k - 1]*b[n - i, Min[n - i, i], k]]; %t A301595 a[n_] := b[n, n, 3]; %t A301595 a /@ Range[0, 35] (* _Jean-François Alcover_, May 19 2021, after _Alois P. Heinz_ *) %Y A301595 Cf. A000041, A001383, A001970, A061260, A063834, A119442, A196545, A281113, A289501, A300383, A301422, A301462, A301480, A301595, A301598, A301706. %Y A301595 Column k=3 of A323718. %K A301595 nonn %O A301595 0,3 %A A301595 _Gus Wiseman_, Mar 24 2018 %E A301595 a(0)=1 prepended by _Alois P. Heinz_, Jan 25 2019