cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301599 Numbers k at which the ratio r(k) = (k-th prime) / (average of first k primes) reaches a record high.

This page as a plain text file.
%I A301599 #13 Mar 28 2018 05:14:21
%S A301599 1,2,3,4,5,7,9,10,12,17,25,31,35,48
%N A301599 Numbers k at which the ratio r(k) = (k-th prime) / (average of first k primes) reaches a record high.
%C A301599 Equivalently, define the function f(k) = k*prime(k)/Sum_{j=1..k} prime(j); sequence lists numbers k such that f(k) > f(m) for all m < k.
%C A301599 a(14)=48 is the final term. Beyond k=48, r(k) decreases fairly smoothly (although nonmonotonically); see the Example section.
%C A301599 For m = 4..18, the first k > 48 at which r(k) < 2 - 1/m is 50, 53, 61, 775, 2678, 8973, 23483, 63535, 159863, 431988, 1091840, 2753459, 7186422, 18479367, 47260890, respectively. Does lim_{k->inf} r(k) equal 2? - _Jon E. Schoenfield_, Mar 27 2018
%e A301599 The table below shows k, prime(k), the sum and average of the first k primes, and r(k), for each number k in the sequence, and also for k = 100, 1000, ..., 10^7.
%e A301599 .
%e A301599    n|   a(n)=k  prime(k)             sum         avg    r(k)
%e A301599   --+--------------------------------------------------------
%e A301599    1|        1         2               2        2.000 1.00000
%e A301599    2|        2         3               5        2.500 1.20000
%e A301599    3|        3         5              10        3.333 1.50000
%e A301599    4|        4         7              17        4.250 1.64706
%e A301599    5|        5        11              28        5.600 1.96429
%e A301599    6|        7        17              58        8.286 2.05172
%e A301599    7|        9        23             100       11.111 2.07000
%e A301599    8|       10        29             129       12.900 2.24806
%e A301599    9|       12        37             197       16.417 2.25381
%e A301599   10|       17        59             440       25.882 2.27955
%e A301599   11|       25        97            1060       42.400 2.28774
%e A301599   12|       31       127            1720       55.484 2.28895
%e A301599   13|       35       149            2276       65.029 2.29130
%e A301599   14|       48       223            4661       97.104 2.29650
%e A301599            100       541           24133      241.330 2.24174
%e A301599           1000      7919         3682913     3682.913 2.15020
%e A301599          10000    104729       496165411    49616.541 2.11077
%e A301599         100000   1299709     62260698721   622606.987 2.08753
%e A301599        1000000  15485863   7472966967499  7472966.967 2.07225
%e A301599       10000000 179424673 870530414842019 87053041.484 2.06110
%Y A301599 Cf. A000040 (primes), A007504 (sum of first n primes), A006988 ((10^n)-th prime), A099824 (sum of first 10^n primes).
%K A301599 nonn,fini,full
%O A301599 1,2
%A A301599 _Jon E. Schoenfield_, Mar 24 2018