A301608 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 2 or 3 horizontally or vertically adjacent elements, with upper left element zero.
1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 3, 2, 3, 1, 1, 6, 8, 8, 6, 1, 1, 10, 13, 25, 13, 10, 1, 1, 21, 26, 65, 65, 26, 21, 1, 1, 42, 55, 226, 330, 226, 55, 42, 1, 1, 86, 154, 755, 1297, 1297, 755, 154, 86, 1, 1, 179, 356, 2539, 6393, 8888, 6393, 2539, 356, 179, 1, 1, 370, 884, 8794, 30904
Offset: 1
Examples
Some solutions for n=5 k=4 ..0..0..1..1. .0..1..1..1. .0..1..0..1. .0..0..0..0. .0..0..1..1 ..0..0..1..1. .1..1..0..1. .1..0..1..0. .0..1..0..0. .0..0..1..1 ..1..1..0..0. .1..0..1..1. .0..1..0..1. .0..0..1..0. .0..0..1..1 ..1..1..0..0. .1..1..1..0. .1..0..1..0. .1..0..0..0. .0..1..0..0 ..1..1..0..0. .1..1..0..1. .0..1..0..1. .0..1..0..0. .0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..219
Crossrefs
Column 2 is A240513(n-2).
Formula
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5)
k=3: [order 18]
k=4: [order 66]
Comments