A301620 a(n) is the total number of top arches with exactly one covering arch for semi-meanders with n top arches.
0, 0, 2, 4, 18, 42, 156, 398, 1398, 3778, 12982, 36522, 124290, 360182, 1220440, 3618090, 12237698, 36938158, 124880222, 382471606, 1293363816, 4009185912, 13565790984, 42478788432, 143851766298, 454339269482, 1539997455570, 4900091676662, 16624834778474, 53240459608298
Offset: 1
Keywords
Examples
For n = 4, a(4) = 4. + + are underneath the starting and ending of each arch with exactly one covering arch. /\ /\ //\\ /\ //\\ /\ /\///\\\, /\/\//\\, ///\\\/\, //\\/\/\ . + + ++ + + ++
Links
- Jean-François Alcover, Table of n, a(n) for n = 1..43
Programs
-
Mathematica
A000682 = Import["https://oeis.org/A000682/b000682.txt", "Table"][[All, 2]]; a[n_] := A000682[[n + 2]] - 2*A000682[[n + 1]]; Array[a, 30] (* Jean-François Alcover, Sep 02 2019 *)
Formula
a(n) = Sum_{k=3..floor((n+3)/2)} (A259689(n+1,k)*(k-2)). - Roger Ford, Dec 10 2018
a(n) = 2*A259702(n+2). - Roger Ford, Dec 24 2018
Comments