cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301626 Square array T(n, k) read by antidiagonals, n >= 0 and k >= 0: T(n, k) = square of the distance from n + k*i to nearest cube of a Gaussian integer (where i denotes the root of -1 with positive imaginary part).

This page as a plain text file.
%I A301626 #23 Mar 27 2018 18:33:29
%S A301626 0,0,0,1,1,1,4,1,1,4,8,2,0,2,8,9,5,1,1,5,9,4,10,4,2,4,10,4,1,5,9,5,5,
%T A301626 9,5,1,0,2,8,10,8,10,8,2,0,1,1,5,13,13,13,13,5,1,1,4,2,4,10,20,18,20,
%U A301626 10,4,2,4,4,2,4,9,17,25,25,17,9,4,2,4,5,1,1
%N A301626 Square array T(n, k) read by antidiagonals, n >= 0 and k >= 0: T(n, k) = square of the distance from n + k*i to nearest cube of a Gaussian integer (where i denotes the root of -1 with positive imaginary part).
%C A301626 The distance between two Gaussian integers is not necessarily integer, hence the use of the square of the distance.
%C A301626 This sequence is a complex variant of A074989.
%C A301626 See A301636 for the square array dealing with squares of Gaussian integers.
%H A301626 Rémy Sigrist, <a href="/A301626/b301626.txt">Table of n, a(n) for n = 0..20300</a>
%H A301626 Rémy Sigrist, <a href="/A301626/a301626.png">Colored scatterplot for abs(x) <= 500 and abs(y) <= 500</a> (where the hue is function of sqrt(T(abs(x), abs(y))))
%H A301626 Rémy Sigrist, <a href="/A301626/a301626_1.png">Voronoi diagram of the cubes of Gaussian integers for abs(x) <= 500 and abs(y) <= 500</a>
%H A301626 Rémy Sigrist, <a href="/A301626/a301626_2.png">Scatterplot of (x, y) such that T(abs(x), abs(y)) is a square and abs(x) <= 500 and abs(y) <= 500</a>
%H A301626 Rémy Sigrist, <a href="/A301626/a301626.gp.txt">PARI program for A301626</a>
%H A301626 Wikipedia, <a href="https://en.wikipedia.org/wiki/Gaussian_integer">Gaussian integer</a>
%H A301626 Wikipedia, <a href="https://en.wikipedia.org/wiki/Voronoi_diagram">Voronoi diagram</a>
%H A301626 <a href="/index/Di#distance_to_the_nearest">Index entries for sequences related to distance to nearest element of some set</a>
%F A301626 T(n, k) = T(k, n).
%F A301626 T(n, 0) <= A074989(n)^2.
%F A301626 T(n, 0) = 0 iff n is a cube (A000578).
%F A301626 T(n, k) = 0 iff n + k*i = z^3 for some Gaussian integer z.
%e A301626 Square array begins:
%e A301626   n\k|    0    1    2    3    4    5    6    7    8    9   10
%e A301626   ---+-------------------------------------------------------
%e A301626     0|    0    0    1    4    8    9    4    1    0    1    4  -->  A301639
%e A301626     1|    0    1    1    2    5   10    5    2    1    2    2
%e A301626     2|    1    1    0    1    4    9    8    5    4    4    1
%e A301626     3|    4    2    1    2    5   10   13   10    9    5    2
%e A301626     4|    8    5    4    5    8   13   20   17   13    8    5
%e A301626     5|    9   10    9   10   13   18   25   25   18   13   10
%e A301626     6|    4    5    8   13   20   25   32   32   25   20   17
%e A301626     7|    1    2    5   10   17   25   32   41   34   29   26
%e A301626     8|    0    1    4    9   13   18   25   34   45   40   37
%e A301626     9|    1    2    4    5    8   13   20   29   40   53   50
%e A301626    10|    4    2    1    2    5   10   17   26   37   50   65
%o A301626 (PARI) See Links section.
%Y A301626 Cf. A000578, A074989, A301636, A301639 (first row/column).
%K A301626 nonn,tabl,look
%O A301626 0,7
%A A301626 _Rémy Sigrist_, Mar 24 2018