cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301631 Numerator of population variance of n-th row of Pascal's triangle.

Original entry on oeis.org

0, 0, 2, 1, 94, 122, 2372, 173, 50294, 56014, 983740, 266930, 18376812, 19624884, 333313544, 5500541, 5923399334, 6206260694, 103708093964, 27001710566, 1795265477444, 1860906681644, 30802090121144, 1988024895074, 524715115366844, 540193965134732, 8886200762228312
Offset: 0

Views

Author

N. J. A. Sloane and Chai Wah Wu, Mar 24 2018

Keywords

Comments

Denominator of population variance of n-th row of Pascal's triangle is A191871(n+1) = A000265(n+1)^2.

Examples

			The first few population variances are 0, 0, 2/9, 1, 94/25, 122/9, 2372/49, 173, 50294/81, 56014/25, 983740/121, 266930/9, 18376812/169, 19624884/49, 333313544/225, 5500541, 5923399334/289, ...
		

Crossrefs

Programs

  • PARI
    a(n) = numerator(binomial(2*n,n)/(n+1) - 4^n/(n+1)^2); \\ Altug Alkan, Mar 25 2018
  • Python
    from fractions import Fraction
    from sympy import binomial
    def A301631(n):
        return (Fraction(int(binomial(2*n,n)))/(n+1) - Fraction(4**n)/(n+1)**2).numerator
    

Formula

a(n) = numerator of binomial(2n,n)/(n+1) - 4^n/(n+1)^2.
a(n) = A000108(n)*A000265(n+1)^2 - A075101(n+1)^2/4.