A301631 Numerator of population variance of n-th row of Pascal's triangle.
0, 0, 2, 1, 94, 122, 2372, 173, 50294, 56014, 983740, 266930, 18376812, 19624884, 333313544, 5500541, 5923399334, 6206260694, 103708093964, 27001710566, 1795265477444, 1860906681644, 30802090121144, 1988024895074, 524715115366844, 540193965134732, 8886200762228312
Offset: 0
Examples
The first few population variances are 0, 0, 2/9, 1, 94/25, 122/9, 2372/49, 173, 50294/81, 56014/25, 983740/121, 266930/9, 18376812/169, 19624884/49, 333313544/225, 5500541, 5923399334/289, ...
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..1659
- Simon Demers, Taylor's Law Holds for Finite OEIS Integer Sequences and Binomial Coefficients, American Statistician, online: 19 Jan 2018.
Crossrefs
Programs
-
PARI
a(n) = numerator(binomial(2*n,n)/(n+1) - 4^n/(n+1)^2); \\ Altug Alkan, Mar 25 2018
-
Python
from fractions import Fraction from sympy import binomial def A301631(n): return (Fraction(int(binomial(2*n,n)))/(n+1) - Fraction(4**n)/(n+1)**2).numerator
Comments