cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301636 Square array T(n, k) read by antidiagonals upwards, n >= 0 and k >= 0: T(n, k) = square of the distance from n + k*i to nearest square of a Gaussian integer (where i denotes the root of -1 with positive imaginary part).

This page as a plain text file.
%I A301636 #11 Mar 26 2018 20:04:48
%S A301636 0,0,1,1,1,0,1,2,1,1,0,2,4,2,4,1,1,4,2,4,9,4,2,4,1,1,5,4,4,5,5,2,0,2,
%T A301636 5,1,1,5,8,5,1,1,5,2,0,0,2,8,10,4,2,4,5,1,1,1,1,5,10,8,5,5,9,4,2,4,4,
%U A301636 2,4,9,5,5,8,10,9,5,5,9,9,5,5,9,4,2,4,10
%N A301636 Square array T(n, k) read by antidiagonals upwards, n >= 0 and k >= 0: T(n, k) = square of the distance from n + k*i to nearest square of a Gaussian integer (where i denotes the root of -1 with positive imaginary part).
%C A301636 The distance between two Gaussian integers is not necessarily integer, hence the use of the square of the distance.
%C A301636 This sequence is a complex variant of A053188.
%C A301636 See A301626 for the square array dealing with cubes of Gaussian integers.
%H A301636 Rémy Sigrist, <a href="/A301636/a301636.png">Colored scatterplot for abs(x) <= 500 and abs(y) <= 500</a> (where the hue is function of sqrt(T(abs(x), abs(y))))
%H A301636 Rémy Sigrist, <a href="/A301636/a301636_1.png">Voronoi diagram of the squares of Gaussian integers for abs(x) <= 500 and abs(y) <= 500</a>
%H A301636 Rémy Sigrist, <a href="/A301636/a301636_2.png">Scatterplot of (x, y) such that T(abs(x), abs(y)) is a square and abs(x) <= 500 and abs(y) <= 500</a>
%H A301636 Rémy Sigrist, <a href="/A301636/a301636.gp.txt">PARI program for A301636</a>
%H A301636 Wikipedia, <a href="https://en.wikipedia.org/wiki/Gaussian_integer">Gaussian integer</a>
%H A301636 Wikipedia, <a href="https://en.wikipedia.org/wiki/Voronoi_diagram">Voronoi diagram</a>
%H A301636 <a href="/index/Di#distance_to_the_nearest">Index entries for sequences related to distance to nearest element of some set</a>
%F A301636 T(n, 0) <= A053188(n)^2.
%F A301636 T(n, 0) = 0 iff n is a square (A000290).
%F A301636 T(0, k) = 0 iff k is twice a square (A001105).
%F A301636 T(n, k) = 0 iff n + k*i = z^2 for some Gaussian integer z.
%e A301636 Square array begins:
%e A301636   n\k|    0    1    2    3    4    5    6    7    8    9   10
%e A301636   ---+-------------------------------------------------------
%e A301636     0|    0    1    0    1    4    9    4    1    0    1    4
%e A301636     1|    0    1    1    2    4    5    5    2    1    2    5
%e A301636     2|    1    2    4    2    1    2    5    5    4    5    8
%e A301636     3|    1    2    4    1    0    1    4    9    9   10    8
%e A301636     4|    0    1    4    2    1    2    5   10   16   10    5
%e A301636     5|    1    2    5    5    4    5    8   10   13    9    4
%e A301636     6|    4    5    8   10    8    5    4    5    8   10    5
%e A301636     7|    4    5    8   10    5    2    1    2    5   10    8
%e A301636     8|    1    2    5    9    4    1    0    1    4    9   13
%e A301636     9|    0    1    4    9    5    2    1    2    5   10   17
%e A301636    10|    1    2    5   10    8    5    4    5    8   13   20
%o A301636 (PARI) See Links section.
%Y A301636 Cf. A000290, A001105, A053188, A301626.
%K A301636 nonn,tabl
%O A301636 0,8
%A A301636 _Rémy Sigrist_, Mar 25 2018