This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A301652 #52 Mar 11 2024 08:31:31 %S A301652 0,1,0,1,1,1,0,2,1,2,0,0,1,1,0,1,0,1,1,1,1,1,0,2,1,1,2,1,0,0,2,1,0,2, %T A301652 0,1,2,1,1,2,0,2,2,1,2,2,0,0,3,1,0,3,0,1,3,1,1,3,0,2,3,1,2,3,0,0,0,1, %U A301652 1,0,0,1,0,1,0,1,1,1,0,1,0,2,0,1,1,2,0,1,0,0,1,1 %N A301652 Triangle read by rows: row n gives the digits of n in factorial base in reversed order. %C A301652 Row n gives exponents for successive primes 2, 3, 5, 7, 11, etc., in the prime factorization of A276076(n). - _Antti Karttunen_, Mar 11 2024 %H A301652 Seiichi Manyama, <a href="/A301652/b301652.txt">Rows n = 0..2000, flattened</a> %H A301652 Wikipedia, <a href="http://en.wikipedia.org/wiki/Factoradic">Factorial number system</a>. %H A301652 <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a>. %F A301652 T(n,k) = floor(n/k!) mod k+1. - _Tom Edgar_, Aug 15 2018 %e A301652 n | 1 2 6 %e A301652 ---+--------- %e A301652 0 | 0; %e A301652 1 | 1; %e A301652 2 | 0, 1; %e A301652 3 | 1, 1; %e A301652 4 | 0, 2; %e A301652 5 | 1, 2; %e A301652 6 | 0, 0, 1; %e A301652 7 | 1, 0, 1; %e A301652 8 | 0, 1, 1; %e A301652 9 | 1, 1, 1; %e A301652 10 | 0, 2, 1; %e A301652 11 | 1, 2, 1; %e A301652 12 | 0, 0, 2; %e A301652 13 | 1, 0, 2; %e A301652 14 | 0, 1, 2; %e A301652 15 | 1, 1, 2; %e A301652 16 | 0, 2, 2; %e A301652 17 | 1, 2, 2; %e A301652 18 | 0, 0, 3; %e A301652 19 | 1, 0, 3; %t A301652 row[n_] := Module[{k = n, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0 || r != 0, AppendTo[s, r]; m++]; s]; row[0] = {0}; Array[row, 31, 0] // Flatten (* _Amiram Eldar_, Mar 11 2024 *) %o A301652 (Sage) terms=25; print([0]+[x for sublist in [[floor(n/factorial(i))%(i+1) for i in [k for k in [1..n] if factorial(k)<=n]] for n in [1..terms]] for x in sublist]) # _Tom Edgar_, Aug 15 2018 %Y A301652 Triangle A108731 with rows reversed. %Y A301652 Cf. A007623, A034968 (row sums), A208575 (row products), A227153 (products of nonzero terms on row n), A276076, A301593. %K A301652 nonn,tabf,base %O A301652 0,8 %A A301652 _Seiichi Manyama_, Mar 25 2018