A301664 Number of nX3 0..1 arrays with every element equal to 1, 2 or 4 horizontally or vertically adjacent elements, with upper left element zero.
1, 10, 30, 118, 407, 1498, 5289, 19184, 68832, 247756, 890523, 3203084, 11517675, 41422044, 148957388, 535680672, 1926390947, 6927645818, 24912983963, 89591402294, 322185988646, 1158636174394, 4166654317703, 14984004032116
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..0. .0..1..1. .0..0..1. .0..0..0. .0..0..0. .0..0..1. .0..0..1 ..1..1..1. .0..0..0. .0..1..1. .0..1..0. .0..1..0. .1..1..1. .1..1..1 ..1..0..1. .1..1..0. .1..1..0. .0..1..0. .0..1..1. .1..0..0. .1..0..0 ..0..0..1. .1..0..1. .0..0..0. .1..1..0. .1..0..0. .1..1..0. .1..0..1 ..1..1..1. .0..0..1. .0..1..1. .0..0..0. .1..1..0. .0..0..0. .1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A301669.
Formula
Empirical: a(n) = 2*a(n-1) +6*a(n-2) -2*a(n-4) +2*a(n-5) -9*a(n-6) -50*a(n-7) -37*a(n-8) +34*a(n-9) +43*a(n-10) -16*a(n-11) +15*a(n-12) +18*a(n-13) -7*a(n-14) -2*a(n-16) +4*a(n-17) -6*a(n-18) +a(n-20)
Comments