This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A301711 #24 Jul 31 2024 11:17:40 %S A301711 1,6,17,34,56,83,116,155,199,248,303,364,430,501,578,661,749,842,941, %T A301711 1046,1156,1271,1392,1519,1651,1788,1931,2080,2234,2393,2558,2729, %U A301711 2905,3086,3273,3466,3664,3867,4076,4291,4511,4736,4967,5204,5446,5693,5946,6205,6469,6738,7013,7294,7580 %N A301711 Partial sums of A301710. %C A301711 Linear recurrence and g.f. confirmed by Shutov/Maleev link in A301710. - _Ray Chandler_, Aug 30 2023 %H A301711 Ray Chandler, <a href="/A301711/b301711.txt">Table of n, a(n) for n = 0..1000</a> %H A301711 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (3,-4,4,-3,1). %F A301711 From _Colin Barker_, Apr 07 2018: (Start) %F A301711 G.f.: (1 + 3*x + 3*x^2 + 3*x^3 + x^4) / ((1 - x)^3*(1 + x^2)). %F A301711 a(n) = (1/8+i/8)*((3-3*i) + (-i)^(1+n) + i^n + (11-11*i)*n + (11-11*i)*n^2) where i=sqrt(-1). %F A301711 a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 3*a(n-4) + a(n-5) for n>4. (End) %t A301711 LinearRecurrence[{3, -4, 4, -3, 1}, {1, 6, 17, 34, 56}, 100] (* _Paolo Xausa_, Jul 31 2024 *) %Y A301711 Cf. A301710. %K A301711 nonn %O A301711 0,2 %A A301711 _N. J. A. Sloane_, Mar 26 2018 %E A301711 More terms from _R. J. Mathar_, Mar 31 2018