cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301719 Partial sums of A301718.

This page as a plain text file.
%I A301719 #18 Aug 30 2023 14:10:22
%S A301719 1,6,17,34,57,85,118,157,202,253,309,370,437,510,589,673,762,857,958,
%T A301719 1065,1177,1294,1417,1546,1681,1821,1966,2117,2274,2437,2605,2778,
%U A301719 2957,3142,3333,3529,3730,3937,4150,4369,4593,4822,5057,5298,5545,5797,6054,6317,6586,6861,7141,7426,7717,8014,8317,8625
%N A301719 Partial sums of A301718.
%C A301719 Linear recurrence and g.f. confirmed by Shutov/Maleev link in A301718. - _Ray Chandler_, Aug 30 2023
%H A301719 Ray Chandler, <a href="/A301719/b301719.txt">Table of n, a(n) for n = 0..1000</a>
%H A301719 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (2, -1, 0, 0, 1, -2, 1).
%F A301719 From _Colin Barker_, Apr 09 2018: (Start)
%F A301719 G.f.: (1 + x)^2*(1 + 2*x + x^2 + 2*x^3 + x^4) / ((1 - x)^3*(1 + x + x^2 + x^3 + x^4)).
%F A301719 a(n) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + a(n-7) for n>6. (End)
%F A301719 Conjecture: a(n) ~ 14*n^2/5. - _Stefano Spezia_, Mar 28 2023
%Y A301719 Cf. A301718.
%K A301719 nonn
%O A301719 0,2
%A A301719 _N. J. A. Sloane_, Mar 26 2018