A301729 a(0)=1; thereafter positive numbers that are congruent to {0, 1, 3, 5} mod 6.
1, 1, 3, 5, 6, 7, 9, 11, 12, 13, 15, 17, 18, 19, 21, 23, 24, 25, 27, 29, 30, 31, 33, 35, 36, 37, 39, 41, 42, 43, 45, 47, 48, 49, 51, 53, 54, 55, 57, 59, 60, 61, 63, 65, 66, 67, 69, 71, 72, 73, 75, 77, 78, 79, 81, 83, 84, 85, 87, 89, 90, 91, 93, 95, 96, 97
Offset: 0
Keywords
Links
- A. V. Shutov, The number of words of a given length in the planar crystallographic groups, (in Russian), Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), Vol. 302 (2003), Anal. Teor. Chisel i Teor. Funkts. 19, pp. 188-197, 203; translation, in J. Math. Sci. (N.Y.), Vol. 129, No. 3 (2005), pp. 3922-3926 [MR2023041]. See Table 1, line "p31m".
Crossrefs
Essentially the same as A047273.
Programs
-
Maple
f:= proc(n) if n=0 then 1 elif (n mod 4) = 0 then (3*n)/2 elif (n mod 4) = 1 then (3*n-1)/2 elif (n mod 4) = 2 then (3*n)/2 else (3*n+1)/2 fi; end; s1 := [seq(f(n),n=0..70)];
-
Mathematica
Join[{1}, Select[Range[100], MemberQ[{0, 1, 3, 5}, Mod[#,6]] &]] (* Amiram Eldar, Dec 31 2021 *)
Formula
Sum_{n>=1} (-1)^(n+1)/a(n) = log(108)/6 = log(2)/3 + log(3)/2. - Amiram Eldar, Dec 31 2021