cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A301747 Expansion of Product_{k>=1} (1/(1 - x^k))^(sigma_0(k)^2).

Original entry on oeis.org

1, 1, 5, 9, 28, 48, 130, 226, 532, 941, 2021, 3545, 7210, 12509, 24209, 41715, 77742, 132404, 239655, 403731, 712426, 1188079, 2052070, 3386854, 5745200, 9388740, 15672560, 25376167, 41765597, 67021171, 108932532, 173327693, 278533669, 439653317, 699265665
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 26 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1-x^k)^(DivisorSigma[0, k]^2), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 50; s = 1 - x; Do[s *= Sum[Binomial[DivisorSigma[0, k]^2, j]*(-1)^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]]; , {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 29 2018 *)

Formula

log(a(n)) ~ sqrt(n) * log(n)^(3/2) / (2*sqrt(3)). - Vaclav Kotesovec, Aug 28 2018
Showing 1-1 of 1 results.