cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301756 Number of ways to choose disjoint strict rooted partitions of each part in a strict rooted partition of n.

This page as a plain text file.
%I A301756 #7 Mar 26 2018 20:02:57
%S A301756 1,1,1,2,3,5,7,10,15,22,30,42,60,85,114,155,206,286,394,524,683,910,
%T A301756 1187,1564,2090,2751,3543,4606,5917,7598,9771,12651,16260,20822,26421,
%U A301756 33525,42463,53594,67337,85299
%N A301756 Number of ways to choose disjoint strict rooted partitions of each part in a strict rooted partition of n.
%C A301756 A rooted partition of n is an integer partition of n - 1.
%e A301756 The a(8) = 10 rooted twice-partitions:
%e A301756 (6), (51), (42), (321),
%e A301756 (5)(), (41)(), (32)(), (4)(1), (3)(2),
%e A301756 (3)(1)().
%t A301756 twirtns[n_]:=Join@@Table[Tuples[IntegerPartitions[#-1]&/@ptn],{ptn,IntegerPartitions[n-1]}];
%t A301756 Table[Select[twirtns[n],And[UnsameQ@@Total/@#,UnsameQ@@Join@@#]&]//Length,{n,20}]
%Y A301756 Cf. A002865, A032305, A063834, A093637, A275780, A279375, A294786, A301422, A301462, A301467, A301480, A301706.
%K A301756 nonn,more
%O A301756 1,4
%A A301756 _Gus Wiseman_, Mar 26 2018