A302593
Numbers whose prime indices are powers of a common prime number.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 34, 36, 38, 40, 41, 42, 44, 46, 48, 49, 50, 53, 54, 56, 57, 59, 62, 63, 64, 67, 68, 72, 76, 80, 81, 82, 83, 84, 88, 92, 96, 97, 98, 100, 103, 106, 108, 109, 112
Offset: 1
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.
01: {}
02: {{}}
03: {{1}}
04: {{},{}}
05: {{2}}
06: {{},{1}}
07: {{1,1}}
08: {{},{},{}}
09: {{1},{1}}
10: {{},{2}}
11: {{3}}
12: {{},{},{1}}
14: {{},{1,1}}
16: {{},{},{},{}}
17: {{4}}
18: {{},{1},{1}}
19: {{1,1,1}}
20: {{},{},{2}}
21: {{1},{1,1}}
22: {{},{3}}
23: {{2,2}}
24: {{},{},{},{1}}
25: {{2},{2}}
27: {{1},{1},{1}}
28: {{},{},{1,1}}
31: {{5}}
32: {{},{},{},{},{}}
34: {{},{4}}
36: {{},{},{1},{1}}
38: {{},{1,1,1}}
40: {{},{},{},{2}}
Cf.
A000961,
A001222,
A003963,
A005117,
A007716,
A056239,
A275024,
A047968,
A281113,
A295924,
A301760,
A302242,
A302243.
-
filter:= proc(n) local F,q;
uses numtheory;
F:= map(pi, factorset(n));
nops(`union`(op(map(factorset,F)))) <= 1
end proc:
select(filter, [$1..200]); # Robert Israel, Oct 22 2020
-
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],SameQ@@Join@@primeMS/@primeMS[#]&]
A302596
Powers of prime numbers of prime index.
Original entry on oeis.org
1, 3, 5, 9, 11, 17, 25, 27, 31, 41, 59, 67, 81, 83, 109, 121, 125, 127, 157, 179, 191, 211, 241, 243, 277, 283, 289, 331, 353, 367, 401, 431, 461, 509, 547, 563, 587, 599, 617, 625, 709, 729, 739, 773, 797, 859, 877, 919, 961, 967, 991, 1031, 1063, 1087, 1153
Offset: 1
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set multisystems.
001: {}
003: {{1}}
005: {{2}}
009: {{1},{1}}
011: {{3}}
017: {{4}}
025: {{2},{2}}
027: {{1},{1},{1}}
031: {{5}}
041: {{6}}
059: {{7}}
067: {{8}}
081: {{1},{1},{1},{1}}
083: {{9}}
109: {{10}}
121: {{3},{3}}
125: {{2},{2},{2}}
Cf.
A000961,
A001222,
A003963,
A005117,
A006450,
A007716,
A056239,
A076610,
A275024,
A047968,
A281113,
A295924,
A301760,
A302242,
A302243.
A302594
Numbers whose prime indices other than 1 are equal prime numbers.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 16, 17, 18, 20, 22, 24, 25, 27, 31, 32, 34, 36, 40, 41, 44, 48, 50, 54, 59, 62, 64, 67, 68, 72, 80, 81, 82, 83, 88, 96, 100, 108, 109, 118, 121, 124, 125, 127, 128, 134, 136, 144, 157, 160, 162, 164, 166, 176, 179, 191, 192
Offset: 1
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.
01: {}
02: {{}}
03: {{1}}
04: {{},{}}
05: {{2}}
06: {{},{1}}
08: {{},{},{}}
09: {{1},{1}}
10: {{},{2}}
11: {{3}}
12: {{},{},{1}}
16: {{},{},{},{}}
17: {{4}}
18: {{},{1},{1}}
20: {{},{},{2}}
22: {{},{3}}
24: {{},{},{},{1}}
Cf.
A000961,
A001222,
A003963,
A005117,
A006450,
A007716,
A056239,
A076610,
A275024,
A047968,
A281113,
A295924,
A301760,
A302242,
A302243.
-
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[400],MatchQ[Union[DeleteCases[primeMS[#],1]],{_?PrimeQ}|{}]&]
Showing 1-3 of 3 results.
Comments