This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A301764 #8 Aug 27 2018 01:52:43 %S A301764 1,1,2,3,4,4,6,5,6,7,8,5,10,7,8,10,10,6,12,7,12,13,10,5,14,12,11,11, %T A301764 14,7,18,9,12,13,11,12,20,10,10,13,18,9,20,9,14,20,12,5,20,15,19,14, %U A301764 17,7,18,16,20,17,12,5,26,13,12,21,18,17,24,9,15,13,22,9 %N A301764 Number of ways to choose a constant rooted partition of each part in a constant rooted partition of n such that the flattened sequence is also constant. %C A301764 A rooted partition of n is an integer partition of n - 1. %H A301764 Andrew Howroyd, <a href="/A301764/b301764.txt">Table of n, a(n) for n = 1..1000</a> %e A301764 The a(11) = 8 rooted twice-partitions: (9), (333), (111111111), (4)(4), (22)(22), (1111)(1111), (1)(1)(1)(1)(1), ()()()()()()()()()(). %t A301764 Table[If[n===1,1,DivisorSum[n-1,If[#===1,1,DivisorSigma[0,#-1]]&]],{n,100}] %o A301764 (PARI) a(n)=if(n==1, 1, sumdiv(n-1, d, if(d==1, 1, numdiv(d-1)))) \\ _Andrew Howroyd_, Aug 26 2018 %Y A301764 Cf. A002865, A007425, A063834, A093637, A127524, A295931, A300383, A301422, A301462, A301467, A301480, A301706. %K A301764 nonn %O A301764 1,3 %A A301764 _Gus Wiseman_, Mar 26 2018