A301768 Number of ways to choose a strict rooted partition of each part in a constant rooted partition of n.
1, 1, 2, 2, 4, 3, 6, 5, 11, 8, 14, 11, 32, 16, 36, 32, 70, 33, 104, 47, 168, 130, 178, 90, 521, 155, 369, 383, 902, 223, 1562, 297, 1952, 1392, 1474, 1665, 6297, 669, 2878, 4241, 12401, 1114, 17474, 1427, 19436, 20754, 9971, 2305, 80110, 19295, 51942, 36428
Offset: 1
Keywords
Examples
The a(9) = 11 rooted twice-partitions: (7), (61), (52), (43), (421), (3)(3), (3)(21), (21)(3), (21)(21), (1)(1)(1)(1), ()()()()()()()().
Crossrefs
Programs
-
Mathematica
Table[Sum[PartitionsQ[n/d-1]^d,{d,Divisors[n]}],{n,50}]
Comments