cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301770 G.f. A(x) satisfies: A(x) = 1/(1 - x*A(x) - x^2*A(x)^2/(1 - x*A(x) - 2*x^2*A(x)^2/(1 - x*A(x) - 3*x^2*A(x)^2/(1 - ...)))), a continued fraction.

This page as a plain text file.
%I A301770 #6 Nov 05 2021 05:56:23
%S A301770 1,1,3,11,47,217,1061,5399,28337,152381,835823,4660779,26357111,
%T A301770 150872165,872878665,5098306063,30034591105,178326873753,
%U A301770 1066472979083,6421120346267,38907397325295,237182461204097,1454326514077709,8968048205494983,55608797571427793,346716786105033077
%N A301770 G.f. A(x) satisfies: A(x) = 1/(1 - x*A(x) - x^2*A(x)^2/(1 - x*A(x) - 2*x^2*A(x)^2/(1 - x*A(x) - 3*x^2*A(x)^2/(1 - ...)))), a continued fraction.
%F A301770 a(n) = [x^n] (Sum_{k>=0} A000085(k)*x^k)^(n+1)/(n + 1).
%e A301770 G.f. A(x) = 1 + x + 3*x^2 + 11*x^3 + 47*x^4 + 217*x^5 + 1061*x^6 + 5399*x^7 + 28337*x^8 + ...
%t A301770 Table[SeriesCoefficient[(1 + Sum[(I/Sqrt[2])^k * HermiteH[k, -I/Sqrt[2]] * x^k, {k, 1, n}])^(n+1)/(n+1), {x, 0, n}], {n, 0, 30}] (* _Vaclav Kotesovec_, Nov 05 2021 *)
%Y A301770 Cf. A000085, A224922, A301409.
%K A301770 nonn
%O A301770 0,3
%A A301770 _Ilya Gutkovskiy_, Mar 26 2018