cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301777 Expansion of Product_{k>=1} (1 + x^k)^A001001(k).

Original entry on oeis.org

1, 1, 7, 20, 69, 178, 571, 1451, 4108, 10480, 27578, 68401, 172818, 417979, 1017575, 2410964, 5702481, 13228877, 30573978, 69594694, 157597162, 352694078, 784615466, 1728604925, 3785636280, 8221695626, 17751593170, 38051212654, 81103710142, 171757084527
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 26 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Exp[Sum[-(-1)^j * Sum[Sum[d*DivisorSigma[1, d], {d, Divisors[k]}] * x^(j*k) / j, {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 31 2018 *)

Formula

a(n) ~ exp(2*Pi^(3/2) * (7*Zeta(3))^(1/4) * n^(3/4) / (3^(3/2) * 5^(1/4)) - 3*sqrt(5*Zeta(3)*n) / (4*7^(1/2)*Pi) + (sqrt(Pi) * 5^(1/4) / (3^(3/2) * (7*Zeta(3))^(1/4)) - 3^(5/2) * 5^(5/4) * Zeta(3)^(3/4) / (7^(5/4) * Pi^(7/2))) * n^(1/4) / 16 + 5/(448*Pi^2) - 675*Zeta(3) / (784*Pi^6)) * Pi^(1/4) * (7*Zeta(3))^(1/8) / (4*3^(1/4) * 5^(1/8) * n^(5/8)). - Vaclav Kotesovec, Mar 26 2018