A301790 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0 or 1 horizontally or antidiagonally adjacent elements, with upper left element zero.
1, 2, 2, 3, 5, 4, 5, 6, 13, 8, 8, 9, 12, 34, 16, 13, 14, 17, 24, 89, 32, 21, 22, 25, 32, 48, 233, 64, 34, 35, 38, 45, 61, 96, 610, 128, 55, 56, 59, 66, 82, 116, 192, 1597, 256, 89, 90, 93, 100, 116, 150, 221, 384, 4181, 512, 144, 145, 148, 155, 171, 205, 275, 421, 768, 10946
Offset: 1
Examples
Some solutions for n=5 k=4 ..0..0..1..0. .0..1..0..1. .0..1..1..0. .0..1..1..0. .0..0..1..0 ..1..0..1..1. .0..1..0..0. .0..0..1..0. .0..0..1..0. .1..0..1..1 ..1..0..0..1. .0..1..1..0. .1..0..1..0. .1..0..1..1. .1..0..0..1 ..1..1..0..0. .0..0..1..0. .0..1..0..1. .1..0..0..1. .1..1..0..1 ..0..1..1..0. .1..0..1..0. .0..1..0..0. .1..1..0..1. .0..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1920
Crossrefs
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1) -a(n-2)
k=3: a(n) = 2*a(n-1)
k=4: a(n) = a(n-1) +2*a(n-2) -a(n-4)
k=5: a(n) = 2*a(n-1) -a(n-4)
k=6: a(n) = a(n-1) +2*a(n-2) -a(n-4) -a(n-5) -a(n-6)
k=7: a(n) = 2*a(n-1) -a(n-4) -a(n-6)
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = 2*a(n-1) -a(n-3) for n>5
n=3: a(n) = 2*a(n-1) -a(n-3) for n>5
n=4: a(n) = 2*a(n-1) -a(n-3) for n>5
n=5: a(n) = 2*a(n-1) -a(n-3) for n>5
n=6: a(n) = 2*a(n-1) -a(n-3) for n>6
n=7: a(n) = 2*a(n-1) -a(n-3) for n>7
Comments