cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301790 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0 or 1 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 2, 2, 3, 5, 4, 5, 6, 13, 8, 8, 9, 12, 34, 16, 13, 14, 17, 24, 89, 32, 21, 22, 25, 32, 48, 233, 64, 34, 35, 38, 45, 61, 96, 610, 128, 55, 56, 59, 66, 82, 116, 192, 1597, 256, 89, 90, 93, 100, 116, 150, 221, 384, 4181, 512, 144, 145, 148, 155, 171, 205, 275, 421, 768, 10946
Offset: 1

Views

Author

R. H. Hardin, Mar 26 2018

Keywords

Comments

Table starts
...1....2...3...5...8...13...21...34...55...89..144...233...377...610...987
...2....5...6...9..14...22...35...56...90..145..234...378...611...988..1598
...4...13..12..17..25...38...59...93..148..237..381...614...991..1601..2588
...8...34..24..32..45...66..100..155..244..388..621...998..1608..2595..4192
..16...89..48..61..82..116..171..260..404..637.1014..1624..2611..4208..6792
..32..233..96.116.150..205..294..438..671.1048.1658..2645..4242..6826.11007
..64..610.192.221.275..364..508..741.1118.1728.2715..4312..6896.11077.17842
.128.1597.384.421.505..648..881.1258.1868.2855.4452..7036.11217.17982.28928
.256.4181.768.802.928.1156.1532.2142.3129.4726.7310.11491.18256.29202.46913

Examples

			Some solutions for n=5 k=4
..0..0..1..0. .0..1..0..1. .0..1..1..0. .0..1..1..0. .0..0..1..0
..1..0..1..1. .0..1..0..0. .0..0..1..0. .0..0..1..0. .1..0..1..1
..1..0..0..1. .0..1..1..0. .1..0..1..0. .1..0..1..1. .1..0..0..1
..1..1..0..0. .0..0..1..0. .0..1..0..1. .1..0..0..1. .1..1..0..1
..0..1..1..0. .1..0..1..0. .0..1..0..0. .1..1..0..1. .0..1..0..0
		

Crossrefs

Column 1 is A000079(n-1).
Column 2 is A001519(n+1).
Column 3 is A003945.
Row 1 is A000045(n+1).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1) -a(n-2)
k=3: a(n) = 2*a(n-1)
k=4: a(n) = a(n-1) +2*a(n-2) -a(n-4)
k=5: a(n) = 2*a(n-1) -a(n-4)
k=6: a(n) = a(n-1) +2*a(n-2) -a(n-4) -a(n-5) -a(n-6)
k=7: a(n) = 2*a(n-1) -a(n-4) -a(n-6)
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = 2*a(n-1) -a(n-3) for n>5
n=3: a(n) = 2*a(n-1) -a(n-3) for n>5
n=4: a(n) = 2*a(n-1) -a(n-3) for n>5
n=5: a(n) = 2*a(n-1) -a(n-3) for n>5
n=6: a(n) = 2*a(n-1) -a(n-3) for n>6
n=7: a(n) = 2*a(n-1) -a(n-3) for n>7