cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301809 Group the natural numbers such that the first group is (1) then (2),(3),(4,5),(6,7,8),... with the n-th group containing F(n) sequential terms where F(n) is the n-th Fibonacci number (A000045(n)). Sequence gives the sum of terms in the n-th group.

This page as a plain text file.
%I A301809 #38 Jul 07 2025 11:50:57
%S A301809 1,2,3,9,21,55,140,364,945,2465,6435,16821,43992,115102,301223,788425,
%T A301809 2063817,5402651,14143524,37026936,96935685,253777537,664392743,
%U A301809 1739393929,4553778096,11921922650,31211961195,81713914569,213929707485,560075086495,1466295355580,3838810662436,10050136117497
%N A301809 Group the natural numbers such that the first group is (1) then (2),(3),(4,5),(6,7,8),... with the n-th group containing F(n) sequential terms where F(n) is the n-th Fibonacci number (A000045(n)). Sequence gives the sum of terms in the n-th group.
%C A301809 a(n) is the sum of all nodes at height n-1 within a binary tree structure recursively built from the Hofstadter G-sequence (see comments for A005206).
%H A301809 Colin Barker, <a href="/A301809/b301809.txt">Table of n, a(n) for n = 1..1000</a>
%H A301809 Wikipedia, <a href="https://www.wikipedia.org/wiki/Hofstadter_sequence">Hofstadter sequence</a>.
%H A301809 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (3,1,-5,-1, 1).
%F A301809 a(1) = 1 and for n > 1, a(n) = (F(n+2)+1)*F(n-1)/2, where F(n) is the n-th Fibonacci number (A000045).
%F A301809 From _Colin Barker_, Mar 27 2018: (Start)
%F A301809 G.f.: x*(1 - x)*(1 - 4*x^2 - x^3 + x^4) / ((1 + x)*(1 - 3*x + x^2)*(1 - x - x^2)).
%F A301809 a(n) = 3*a(n-1) + a(n-2) - 5*a(n-3) - a(n-4) + a(n-5) for n>6. (End)
%F A301809 a(n) = A033192(n+1) - A033192(n) for n > 1. - _J.S. Seneschal_, Jul 07 2025
%e A301809 a(7) = 14 + 15 + 16 + ... + 21 = (F(9)+1)*F(6)/2 = 140.
%t A301809 a[n_] := If[n==1, 1, (Fibonacci[n+2]+1)Fibonacci[n-1]/2]; Array[a, 50]
%t A301809 Join[{1}, LinearRecurrence[{3, 1, -5, -1, 1}, {2, 3, 9, 21, 55}, 40]] (* _Vincenzo Librandi_, Apr 18 2018 *)
%o A301809 (Magma) [1] cat [(Fibonacci(n+2)+1)*Fibonacci(n-1) div 2 : n in [2..35] ]; // _Vincenzo Librandi_, Apr 18 2018
%o A301809 (PARI) a(n) = if (n==1, 1, (fibonacci(n+2)+1)*fibonacci(n-1)/2); \\ _Michel Marcus_, Apr 21 2018
%o A301809 (PARI) Vec(x*(1 - x)*(1 - 4*x^2 - x^3 + x^4) / ((1 + x)*(1 - 3*x + x^2)*(1 - x - x^2)) + O(x^60)) \\ _Colin Barker_, May 11 2018
%Y A301809 Cf. A000045, A005206, A122931.
%Y A301809 Cf. A000217, A033192.
%K A301809 nonn,easy
%O A301809 1,2
%A A301809 _Frank M Jackson_, Mar 27 2018