This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A301832 #12 Nov 04 2021 08:36:23 %S A301832 1,1,2,5,15,49,168,595,2160,7998,30095,114751,442402,1721636,6753869, %T A301832 26680262,106042264,423750562,1701476738,6861334966,27776206851, %U A301832 112839216109,459867381701,1879624039171,7703187691979,31647457638073,130314986803631,537730217342715,2223228743506792 %N A301832 G.f. A(x) satisfies: A(x) = 1/(1 - x*A(x)/(1 - x^3*A(x)^3/(1 - x^5*A(x)^5/(1 - x^7*A(x)^7/(1 - ...))))), a continued fraction. %H A301832 Vaclav Kotesovec, <a href="/A301832/b301832.txt">Table of n, a(n) for n = 0..500</a> %H A301832 Charles H. Conley and Valentin Ovsienko, <a href="https://arxiv.org/abs/2107.01234">Quiddities of polygon dissections and the Conway-Coxeter frieze equation</a>, arXiv:2107.01234 [math.CO], 2021. %F A301832 a(n) = [x^n] (Sum_{k>=0} A143951(k)*x^k)^(n+1)/(n + 1). %F A301832 a(n) ~ c * d^n / n^(3/2), where d = 4.36034166192381738574769007441081546251391... and c = 0.42401561796424536417811444539653002307... - _Vaclav Kotesovec_, Nov 04 2021 %e A301832 G.f. A(x) = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 49*x^5 + 168*x^6 + 595*x^7 + 2160*x^8 + 7998*x^9 + 30095*x^10 + ... %Y A301832 Cf. A143951, A301627. %K A301832 nonn %O A301832 0,3 %A A301832 _Ilya Gutkovskiy_, Mar 27 2018