cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A301842 Number of 2Xn 0..1 arrays with every element equal to 0, 1 or 2 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

2, 8, 25, 81, 263, 855, 2778, 9027, 29333, 95316, 309725, 1006437, 3270370, 10626915, 34531665, 112209036, 364618033, 1184809305, 3849982618, 12510339087, 40651763813, 132096011916, 429239834325, 1394794836717, 4532320816850
Offset: 1

Views

Author

R. H. Hardin, Mar 27 2018

Keywords

Comments

Row 2 of A301841.

Examples

			Some solutions for n=5
..0..1..1..0..0. .0..0..1..0..0. .0..0..0..1..1. .0..1..0..1..1
..0..0..1..0..0. .0..0..0..1..1. .1..0..1..0..0. .1..1..0..0..0
		

Crossrefs

Cf. A301841.

Formula

Empirical: a(n) = 3*a(n-1) +a(n-2) -2*a(n-4) for n>6

A301835 Number of n X n 0..1 arrays with every element equal to 0, 1 or 2 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 8, 139, 5748, 496085, 97439921, 41966406867, 39919204098331, 84196647385137200, 391960289300558475785, 4034683591387591205214712, 91832712356420807374009031299, 4618825005074327343319160956639454
Offset: 1

Views

Author

R. H. Hardin, Mar 27 2018

Keywords

Comments

Diagonal of A301841.

Examples

			Some solutions for n=5
..0..0..0..1..0. .0..0..1..0..0. .0..0..1..0..0. .0..0..1..0..0
..1..0..1..0..1. .0..1..0..1..0. .0..1..0..1..0. .0..0..0..1..0
..1..0..1..0..0. .1..0..1..1..0. .1..0..0..1..0. .1..1..0..1..1
..0..0..1..0..1. .1..0..0..1..1. .1..0..1..0..0. .1..1..0..1..0
..0..0..1..0..0. .0..1..0..1..1. .0..0..1..0..1. .1..1..1..0..0
		

Crossrefs

Cf. A301841.

A301836 Number of n X 3 0..1 arrays with every element equal to 0, 1 or 2 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

4, 25, 139, 773, 4299, 23909, 132971, 739525, 4112907, 22874149, 127215787, 707517317, 3934894923, 21884125925, 121709722091, 676895047237, 3764587553931, 20936952499621, 116441967065899, 647598149464325
Offset: 1

Views

Author

R. H. Hardin, Mar 27 2018

Keywords

Comments

Column 3 of A301841.

Examples

			Some solutions for n=5
..0..0..0. .0..1..0. .0..1..1. .0..1..0. .0..1..1. .0..0..1. .0..0..1
..1..1..0. .1..1..1. .0..1..0. .1..0..0. .0..0..0. .1..0..0. .1..0..1
..1..1..0. .0..0..1. .0..1..0. .1..1..0. .1..0..1. .1..0..0. .1..0..0
..0..1..0. .1..0..1. .1..1..1. .0..1..0. .1..0..1. .1..0..0. .1..1..0
..0..1..1. .1..0..1. .0..1..1. .1..1..1. .1..1..0. .1..0..1. .1..1..0
		

Crossrefs

Cf. A301841.

Formula

Empirical: a(n) = 7*a(n-1) -8*a(n-2) for n > 3.

A301837 Number of nX4 0..1 arrays with every element equal to 0, 1 or 2 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 81, 678, 5748, 48802, 414385, 3518619, 29877293, 253694309, 2154171994, 18291531681, 155317282580, 1318832060857, 11198483378779, 95088702916552, 807418390272882, 6855961191710593, 58215423910060190, 494319539779559696
Offset: 1

Views

Author

R. H. Hardin, Mar 27 2018

Keywords

Comments

Column 4 of A301841.

Examples

			Some solutions for n=5
..0..1..1..0. .0..0..1..0. .0..0..0..1. .0..1..0..1. .0..0..1..1
..0..0..1..1. .0..1..1..1. .1..0..1..1. .1..1..0..1. .1..1..0..0
..1..0..0..1. .0..0..1..0. .0..0..0..1. .1..0..1..1. .0..1..0..0
..1..0..1..1. .1..1..0..1. .1..0..1..0. .1..0..1..1. .0..1..0..1
..0..0..0..1. .0..1..1..0. .0..1..0..1. .0..0..1..1. .0..0..1..0
		

Crossrefs

Cf. A301841.

Formula

Empirical: a(n) = 13*a(n-1) -46*a(n-2) +72*a(n-3) -57*a(n-4) +16*a(n-5) for n>6

A301838 Number of nX5 0..1 arrays with every element equal to 0, 1 or 2 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

16, 263, 3182, 39703, 496085, 6196305, 77396422, 966770632, 12076215811, 150848052398, 1884295439869, 23537397007865, 294013935342365, 3672631985528460, 45876144707506920, 573055146404781265
Offset: 1

Views

Author

R. H. Hardin, Mar 27 2018

Keywords

Comments

Column 5 of A301841.

Examples

			Some solutions for n=5
..0..0..1..0..0. .0..0..0..0..1. .0..0..0..1..1. .0..0..0..0..1
..0..0..1..0..0. .1..1..0..0..1. .1..1..0..0..1. .1..1..1..0..0
..0..0..1..0..1. .1..1..1..0..1. .1..0..1..0..0. .0..1..0..1..0
..0..1..0..1..1. .0..1..1..0..0. .1..0..1..0..1. .1..1..0..1..1
..1..1..0..1..1. .0..1..1..0..1. .0..1..0..0..1. .1..1..1..0..0
		

Crossrefs

Cf. A301841.

Formula

Empirical: a(n) = 24*a(n-1) -201*a(n-2) +885*a(n-3) -2461*a(n-4) +4680*a(n-5) -6187*a(n-6) +5625*a(n-7) -3450*a(n-8) +1378*a(n-9) -324*a(n-10) +32*a(n-11) for n>13

A301839 Number of nX6 0..1 arrays with every element equal to 0, 1 or 2 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

32, 855, 15199, 281758, 5240684, 97439921, 1812097252, 33701001773, 626769301255, 11656674265408, 216791623977204, 4031908496993218, 74985787605598453, 1394592394913802694, 25936755278154522723
Offset: 1

Views

Author

R. H. Hardin, Mar 27 2018

Keywords

Comments

Column 6 of A301841.

Examples

			Some solutions for n=5
..0..1..1..0..1..0. .0..0..1..0..0..1. .0..1..1..0..0..1. .0..0..1..0..1..1
..0..0..1..0..0..1. .0..1..0..1..0..0. .0..0..1..0..0..1. .0..1..1..0..1..0
..0..0..1..1..0..1. .0..1..1..0..1..1. .0..0..1..0..0..1. .0..1..0..0..1..0
..0..0..1..0..1..0. .0..0..1..0..0..1. .0..0..1..0..0..1. .0..1..1..0..1..0
..0..1..1..1..0..0. .0..1..1..0..1..0. .0..0..1..1..0..0. .0..0..1..0..1..0
		

Crossrefs

Cf. A301841.

Formula

Empirical: a(n) = 45*a(n-1) -812*a(n-2) +8427*a(n-3) -59225*a(n-4) +308634*a(n-5) -1256189*a(n-6) +4115169*a(n-7) -11046335*a(n-8) +24584435*a(n-9) -45781016*a(n-10) +71898912*a(n-11) -95852394*a(n-12) +108964324*a(n-13) -105845027*a(n-14) +87815455*a(n-15) -62033967*a(n-16) +37077135*a(n-17) -18559186*a(n-18) +7664773*a(n-19) -2558244*a(n-20) +670720*a(n-21) -132612*a(n-22) +18528*a(n-23) -1616*a(n-24) +64*a(n-25) for n>27

A301840 Number of nX7 0..1 arrays with every element equal to 0, 1 or 2 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

64, 2778, 72514, 1986213, 54948498, 1518341751, 41966406867, 1159968653556, 32062561937804, 886245421510973, 24496909108346419, 677125561489883191, 18716618615716379268, 517351460289528901541, 14300262505893118372023
Offset: 1

Views

Author

R. H. Hardin, Mar 27 2018

Keywords

Comments

Column 7 of A301841.

Examples

			Some solutions for n=5
..0..0..1..0..0..1..0. .0..0..1..0..0..1..0. .0..0..1..0..0..1..1
..0..0..1..0..1..1..0. .0..0..1..0..0..1..1. .0..0..1..0..0..0..1
..0..0..1..0..0..1..0. .0..0..1..0..1..0..0. .0..0..1..1..1..1..0
..0..1..0..0..1..1..0. .1..0..0..1..0..1..1. .1..1..0..0..0..1..1
..0..1..1..0..1..0..1. .1..1..0..1..0..1..1. .0..1..1..0..0..0..0
		

Crossrefs

Cf. A301841.

Formula

Empirical recurrence of order 53 (see link above)

A301843 Number of 3Xn 0..1 arrays with every element equal to 0, 1 or 2 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

4, 32, 139, 678, 3182, 15199, 72514, 346244, 1653214, 7893443, 37688062, 179946317, 859175558, 4102237937, 19586633161, 93518758201, 446516665710, 2131948036306, 10179244758257, 48602040050313, 232056341426270, 1107981178164225
Offset: 1

Views

Author

R. H. Hardin, Mar 27 2018

Keywords

Comments

Row 3 of A301841.

Examples

			Some solutions for n=5
..0..0..0..1..0. .0..1..0..1..1. .0..0..0..0..1. .0..1..0..0..1
..1..0..1..1..1. .1..1..0..0..1. .1..1..0..1..0. .1..1..0..0..1
..1..0..0..0..1. .0..1..1..0..1. .1..1..1..0..1. .0..1..0..0..0
		

Crossrefs

Cf. A301841.

Formula

Empirical: a(n) = 4*a(n-1) +3*a(n-2) +3*a(n-3) +2*a(n-4) -2*a(n-5) +2*a(n-6) -7*a(n-7) -3*a(n-8) +5*a(n-9) -4*a(n-10) -3*a(n-11) +a(n-12) for n>14

A301844 Number of 4Xn 0..1 arrays with every element equal to 0, 1 or 2 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 128, 773, 5748, 39703, 281758, 1986213, 14047365, 99396932, 703490647, 4979239708, 35242914039, 249447707376, 1765580587312, 12496708381182, 88451201375638, 626054067443912, 4431185705002395, 31363755611152388
Offset: 1

Views

Author

R. H. Hardin, Mar 27 2018

Keywords

Comments

Row 4 of A301841.

Examples

			Some solutions for n=5
..0..1..1..0..1. .0..1..0..1..0. .0..1..1..0..0. .0..1..0..0..1
..0..1..0..1..0. .0..1..0..1..1. .0..1..1..1..0. .1..0..1..0..0
..1..0..1..1..0. .0..1..0..1..0. .0..0..1..0..1. .0..1..0..1..1
..0..0..1..1..0. .0..1..1..0..1. .0..1..0..1..0. .1..1..1..0..0
		

Crossrefs

Cf. A301841.

Formula

Empirical: a(n) = 9*a(n-1) -11*a(n-2) -20*a(n-3) +4*a(n-4) +32*a(n-5) +164*a(n-6) -188*a(n-7) -490*a(n-8) +464*a(n-9) +542*a(n-10) -986*a(n-11) +3968*a(n-12) -8*a(n-13) -16968*a(n-14) +4086*a(n-15) +30368*a(n-16) -12378*a(n-17) -23854*a(n-18) +14224*a(n-19) +14464*a(n-20) -9340*a(n-21) -18074*a(n-22) +8682*a(n-23) +3861*a(n-24) +4655*a(n-25) -3137*a(n-26) +194*a(n-27) -1156*a(n-28) +662*a(n-29) -174*a(n-30) +60*a(n-31) -70*a(n-32) +8*a(n-33) +4*a(n-34) +4*a(n-35) for n>38

A301845 Number of 5Xn 0..1 arrays with every element equal to 0, 1 or 2 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

16, 512, 4299, 48802, 496085, 5240684, 54948498, 577194574, 6070236888, 63855283956, 671950959732, 7071734560895, 74426242914307, 783303529316947, 8243938456863301, 86764009232555716, 913155201853131784
Offset: 1

Views

Author

R. H. Hardin, Mar 27 2018

Keywords

Comments

Row 5 of A301841.

Examples

			Some solutions for n=5
..0..0..0..1..1. .0..0..0..1..1. .0..0..0..0..1. .0..0..0..1..0
..1..1..0..0..1. .1..0..1..0..1. .1..1..0..1..1. .1..1..0..1..0
..1..1..1..0..1. .1..0..1..0..0. .0..1..0..1..1. .0..1..0..1..0
..0..1..0..1..0. .0..0..1..1..0. .0..1..0..1..0. .1..0..1..1..0
..0..1..0..1..1. .0..1..0..1..1. .0..1..1..0..1. .1..0..0..1..0
		

Crossrefs

Cf. A301841.

Formula

Empirical recurrence of order 99 (see link above)
Showing 1-10 of 12 results. Next