A301848 Number of states generated by morphism during inflation stage of paper-folding sequence.
1, 3, 1, 4, 1, 3, 2, 4, 1, 3, 1, 4, 2, 3, 2, 4, 1, 3, 1, 4, 1, 3, 2, 4, 2, 3, 1, 4, 2, 3, 2, 4, 1, 3, 1, 4, 1, 3, 2, 4, 1, 3, 1, 4, 2, 3, 2, 4, 2, 3, 1, 4, 1, 3, 2, 4, 2, 3, 1, 4, 2, 3, 2, 4, 1, 3, 1, 4, 1, 3, 2, 4, 1, 3, 1, 4, 2, 3, 2, 4, 1, 3, 1, 4, 1, 3, 2, 4, 2, 3, 1, 4, 2, 3, 2, 4, 2, 3, 1, 4, 1
Offset: 0
Keywords
References
- Jean-Paul Allouche and Jeffrey O. Shallit, Automatic sequences, Cambridge, 2003, sect. 5.1.6.
Links
- W. F. Lunnon, The number-wall algorithm: an LFSR cookbook, Journal of Integer Sequences 4 (2001), no. 1, 01.1.1.
Programs
-
Magma
function b (n) if n eq 0 then return 0; // alternatively, return 1; else while IsEven(n) do n := n div 2; end while; end if; return n div 2 mod 2; end function; function a (n) return b(n+n) - 2*b(n+n-1) + 3; end function; nlo := 0; nhi := 32; [a(n) : n in [nlo..nhi] ];
-
Maple
A301848 := proc(n) A038189(2*n)-2*A038189(2*n-1)+3 ; end proc: seq(A301848(n),n=0..100) ; # R. J. Mathar, Mar 30 2018
-
Mathematica
b[n_] := If[n == 0, 0, BitGet[n, IntegerExponent[n, 2] + 1]]; a[n_] := b[2n] - 2 b[2n-1] + 3; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jul 30 2023 *)
Formula
a(n) = b(2n) - 2 b(2n-1) + 3, where b(n) denotes A038189(n).
Comments