cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301848 Number of states generated by morphism during inflation stage of paper-folding sequence.

Original entry on oeis.org

1, 3, 1, 4, 1, 3, 2, 4, 1, 3, 1, 4, 2, 3, 2, 4, 1, 3, 1, 4, 1, 3, 2, 4, 2, 3, 1, 4, 2, 3, 2, 4, 1, 3, 1, 4, 1, 3, 2, 4, 1, 3, 1, 4, 2, 3, 2, 4, 2, 3, 1, 4, 1, 3, 2, 4, 2, 3, 1, 4, 2, 3, 2, 4, 1, 3, 1, 4, 1, 3, 2, 4, 1, 3, 1, 4, 2, 3, 2, 4, 1, 3, 1, 4, 1, 3, 2, 4, 2, 3, 1, 4, 2, 3, 2, 4, 2, 3, 1, 4, 1
Offset: 0

Views

Author

Fred Lunnon, Mar 27 2018

Keywords

Comments

a(0), a(1), ... is the fixed point of inflation morphism 1 -> 1 3, 2 -> 2 3, 3 -> 1 4, 4 -> 2 4, starting from state 1;
b(0), b(1), ... is the image of a(n) under encoding morphism 1 -> 0, 2 -> 1, 3 -> 0, 4 -> 1.
The number-wall over the rationals (signed Hankel determinants) is apparently free from zeros.

References

  • Jean-Paul Allouche and Jeffrey O. Shallit, Automatic sequences, Cambridge, 2003, sect. 5.1.6.

Crossrefs

Programs

  • Magma
    function b (n)
      if n eq 0 then return 0; // alternatively,  return 1;
      else while IsEven(n) do n := n div 2; end while; end if;
      return n div 2 mod 2; end function;
    function a (n)
      return b(n+n) - 2*b(n+n-1) + 3; end function;
      nlo := 0; nhi := 32;
      [a(n) : n in [nlo..nhi] ];
  • Maple
    A301848 := proc(n)
        A038189(2*n)-2*A038189(2*n-1)+3 ;
    end proc:
    seq(A301848(n),n=0..100) ; # R. J. Mathar, Mar 30 2018
  • Mathematica
    b[n_] := If[n == 0, 0, BitGet[n, IntegerExponent[n, 2] + 1]];
    a[n_] := b[2n] - 2 b[2n-1] + 3;
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jul 30 2023 *)

Formula

a(n) = b(2n) - 2 b(2n-1) + 3, where b(n) denotes A038189(n).