cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301854 Number of positive special sums of integer partitions of n.

This page as a plain text file.
%I A301854 #14 Sep 26 2023 14:58:54
%S A301854 1,3,7,13,25,40,67,100,158,220,336,452,649,862,1228,1553,2155,2738,
%T A301854 3674,4612,6124,7497,9857,12118,15524,18821,24152,28863,36549,44002,
%U A301854 54576,65125,80943,95470,117991,139382,169389,199144,242925,283353,342139,400701,479001
%N A301854 Number of positive special sums of integer partitions of n.
%C A301854 A positive special sum of an integer partition y is a number n > 0 such that exactly one submultiset of y sums to n.
%e A301854 The a(4) = 13 special positive subset-sums:
%e A301854 1<=(1111), 2<=(1111), 3<=(1111), 4<=(1111),
%e A301854 1<=(211),  3<=(211),  4<=(211),
%e A301854 1<=(31),   3<=(31),   4<=(31),
%e A301854 2<=(22),   4<=(22),
%e A301854 4<=(4).
%t A301854 uqsubs[y_]:=Join@@Select[GatherBy[Union[Rest[Subsets[y]]],Total],Length[#]===1&];
%t A301854 Table[Total[Length/@uqsubs/@IntegerPartitions[n]],{n,25}]
%o A301854 (Python)
%o A301854 from collections import Counter
%o A301854 from sympy.utilities.iterables import partitions, multiset_combinations
%o A301854 def A301854(n): return sum(sum(1 for r in Counter(sum(q) for l in range(1,len(p)+1) for q in multiset_combinations(p,l)).values() if r==1) for p in (tuple(Counter(x).elements()) for x in partitions(n))) # _Chai Wah Wu_, Sep 26 2023
%Y A301854 Cf. A000712, A108917, A122768, A275972, A276024, A284640, A299701, A299702, A299729, A301829, A301830, A301854, A301855, A301856.
%K A301854 nonn
%O A301854 1,2
%A A301854 _Gus Wiseman_, Mar 27 2018
%E A301854 a(21)-a(35) from _Alois P. Heinz_, Apr 08 2018
%E A301854 a(36)-a(43) from _Chai Wah Wu_, Sep 26 2023