cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301855 Number of divisors d|n such that no other divisor of n has the same Heinz weight A056239(d).

This page as a plain text file.
%I A301855 #9 Jul 02 2018 06:59:43
%S A301855 1,2,2,3,2,4,2,4,3,4,2,4,2,4,4,5,2,6,2,6,4,4,2,4,3,4,4,6,2,6,2,6,4,4,
%T A301855 4,5,2,4,4,6,2,8,2,6,6,4,2,4,3,6,4,6,2,8,4,8,4,4,2,4,2,4,4,7,4,8,2,6,
%U A301855 4,6,2,4,2,4,6,6,4,8,2,6,5,4,2,6,4,4,4,8,2,6,4,6,4,4,4,4,2,6,6,9,2,8,2,8,8
%N A301855 Number of divisors d|n such that no other divisor of n has the same Heinz weight A056239(d).
%H A301855 Antti Karttunen, <a href="/A301855/b301855.txt">Table of n, a(n) for n = 1..65537</a>
%e A301855 The a(24) = 4 special divisors are 1, 2, 12, 24.
%t A301855 primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A301855 uqsubs[y_]:=Join@@Select[GatherBy[Union[Subsets[y]],Total],Length[#]===1&];
%t A301855 Table[Length[uqsubs[primeMS[n]]],{n,100}]
%o A301855 (PARI)
%o A301855 A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); }
%o A301855 A301855(n) = if(1==n,n,my(m=Map(),w,s); fordiv(n,d,w = A056239(d); if(!mapisdefined(m, w, &s), mapput(m,w,Set([d])), mapput(m,w,setunion(Set([d]),s)))); sumdiv(n,d,(1==length(mapget(m,A056239(d)))))); \\ _Antti Karttunen_, Jul 01 2018
%Y A301855 Cf. A000712, A056239, A108917, A112798, A122768, A275972, A276024, A284640, A296150, A299701, A299702, A299729, A301830, A301854, A301855, A301856.
%K A301855 nonn
%O A301855 1,2
%A A301855 _Gus Wiseman_, Mar 27 2018
%E A301855 More terms from _Antti Karttunen_, Jul 01 2018