cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A326403 Numbers k such that iphi(k) = iphi(k+1), where iphi(k) is an infinitary analog to the Euler totient function (A091732).

Original entry on oeis.org

1, 20, 35, 143, 194, 208, 740, 1220, 1299, 1419, 1803, 1892, 3705, 3716, 3843, 5186, 5635, 7868, 10659, 13634, 13905, 17948, 18507, 18914, 18980, 21007, 25388, 25545, 30380, 31599, 32304, 34595, 37820, 47067, 70394, 73059, 78064, 87856, 94874, 105908, 116963
Offset: 1

Views

Author

Amiram Eldar, Sep 14 2019

Keywords

Examples

			20 is in the sequence since iphi(20) = iphi(21) = 12.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], ?(# == 1 &)])); a[1] = 1; a[n] := Times @@ (Flatten @(f @@@ FactorInteger[n]) - 1); a1 = 1; s = {}; Do[a2 = a[n]; If[a1 == a2, AppendTo[s, n - 1]]; a1 = a2, {n, 2, 10^5}]; s

A385743 Numbers k such that A384247(k) = A384247(k+1).

Original entry on oeis.org

1, 20, 27, 35, 63, 64, 104, 143, 194, 208, 740, 836, 1220, 1299, 1419, 1803, 1892, 2625, 3255, 3705, 3716, 3843, 4096, 5184, 5186, 5635, 5695, 7868, 10659, 13365, 16904, 17948, 18507, 18914, 21007, 22935, 25388, 25545, 27675, 30380, 31599, 32304, 32864, 34595
Offset: 1

Views

Author

Amiram Eldar, Jul 08 2025

Keywords

Comments

63 is the only number k below 10^11 such that A384247(k) = A384247(k+1) = A384247(k+2). Are there any other such terms?

Examples

			1 is a term since A384247(1) = A384247(2) = 1.
20 is a term since A384247(20) = A384247(21) = 12.
		

Crossrefs

Cf. A384247.
Similar sequences: A001274, A287055, A293184, A301866, A326403, A349307.

Programs

  • Mathematica
    f[p_, e_] := p^e*(1 - 1/p^(2^(IntegerExponent[e, 2]))); iphi[1] = 1; iphi[n_] := iphi[n] = Times @@ f @@@ FactorInteger[n]; Select[Range[35000], iphi[#] == iphi[# + 1] &]
  • PARI
    iphi(n) = {my(f = factor(n)); n * prod(i = 1, #f~, (1 - 1/f[i, 1]^(1 << valuation(f[i, 2], 2)))); }
    list(lim) = {my(s1 = iphi(1), s2); for(k = 2, lim, s2 = iphi(k); if(s1 == s2, print1(k-1, ", ")); s1 = s2);}
Showing 1-2 of 2 results.