cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301873 Expansion of Product_{k>=1} 1/(1 - x^k)^A007437(k).

Original entry on oeis.org

1, 1, 5, 12, 36, 80, 215, 476, 1154, 2539, 5772, 12417, 27146, 57111, 120822, 249389, 514201, 1041684, 2103211, 4189502, 8306632, 16296337, 31803839, 61530913, 118413823, 226200319, 429857982, 811633548, 1524828119, 2848379512, 5295550209
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 28 2018

Keywords

Comments

Euler transform of A007437.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Exp[Sum[Sum[(DivisorSigma[1, k] + DivisorSigma[2, k]) * x^(j*k) / (2*j), {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 31 2018 *)

Formula

a(n) ~ exp(2^(7/4) * Pi * Zeta(3)^(1/4) * n^(3/4) / (3^(5/4) * 5^(1/4)) + sqrt(5*Zeta(3)*n/6)/2 - (7*Pi * 5^(1/4) / (2^(15/4) * 3^(7/4) * Zeta(3)^(1/4)) + 5^(5/4) * Zeta(3)^(3/4) / (2^(15/4) * 3^(3/4) * Pi)) * n^(1/4) + (17*Zeta(3))/(72*Pi^2) + 23/576) * A^(1/4) * Zeta(3)^(23/192) / (2^(307/192) * 15^(23/192) * n^(119/192)), where A is the Glaisher-Kinkelin constant A074962.