cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301874 Expansion of Product_{k>=1} (1 + x^k)^A007437(k).

This page as a plain text file.
%I A301874 #7 Mar 31 2018 07:10:10
%S A301874 1,1,4,11,27,64,156,345,779,1706,3665,7742,16207,33300,67830,136526,
%T A301874 271969,536588,1049801,2035620,3917547,7482738,14192358,26738962,
%U A301874 50062081,93158467,172366532,317166618,580542738,1057269629,1916174666
%N A301874 Expansion of Product_{k>=1} (1 + x^k)^A007437(k).
%H A301874 Vaclav Kotesovec, <a href="/A301874/b301874.txt">Table of n, a(n) for n = 0..1000</a>
%F A301874 a(n) ~ exp(2*Pi * (7*Zeta(3))^(1/4) * n^(3/4) / (3^(5/4) * 5^(1/4)) + sqrt(15*Zeta(3)*n/7)/4 - (5^(1/4) * 7^(3/4) * Pi / (3^(7/4) * Zeta(3)^(1/4)) + 15^(5/4) * Zeta(3)^(3/4) / (7^(5/4)*Pi)) * n^(1/4)/16 + 75*Zeta(3) / (784*Pi^2) + 5/192) * (7*Zeta(3))^(1/8) / (2^(95/48) * 15^(1/8) * n^(5/8)).
%t A301874 nmax = 40; CoefficientList[Series[Exp[Sum[-(-1)^j * Sum[(DivisorSigma[1, k] + DivisorSigma[2, k]) * x^(j*k) / (2*j), {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Mar 31 2018 *)
%Y A301874 Cf. A007437, A301873.
%K A301874 nonn
%O A301874 0,3
%A A301874 _Vaclav Kotesovec_, Mar 28 2018