cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301877 Group the natural numbers into groups (1),(2),(3),(4),(5,6),(7,8,9),... so that the n-th group contains N(n) terms, where N(n) is the Narayana's cows sequence (A000930). Sequence contains the sum of the terms in the n-th group.

Original entry on oeis.org

1, 2, 3, 4, 11, 24, 46, 99, 216, 455, 969, 2086, 4469, 9570, 20548, 44118, 94689, 203318, 436653, 937720, 2013884, 4325391, 9290080, 19953405, 42857019, 92051300, 197714721, 424668244, 912140480, 1959179226, 4208109535, 9038581200, 19413940167, 41699153408, 89565528714, 192377651011, 413207678264
Offset: 1

Views

Author

Frank M Jackson, Mar 28 2018

Keywords

Comments

a(n) is the sum of all nodes at height n-1 within a binary tree structure recursively built from the Hofstadter H-sequence (see comments for A005374).

Examples

			a(8) = 14 + 15 + 16 + 17 + 18 + 19 = (2N(8)+N(6)+1)*N(6)/2 = 99.
		

Crossrefs

Programs

  • Mathematica
    Narayana[n_] := Which[n==0, 1, n==1, 1, n==2, 1, True, Narayana[n]=Narayana[n-3] + Narayana[n-1]]; a[n_] := If[n==1, 1, (2 Narayana[n]+Narayana[n-2]+1)Narayana[n-2]/2]; Array[a, 50]

Formula

a(1) = 1 and for n > 1, a(n) = (2N(n)+N(n-2)+1)*N(n-2)/2, where N(n) is the Narayana's cows sequence (A000930).
Conjectures from Colin Barker, Mar 28 2018: (Start)
G.f.: x*(1 - x)*(1 + x - 5*x^3 - 5*x^4 - 3*x^5 + x^6 + 2*x^7 + x^8) / ((1 + x^2 - x^3)*(1 - x - x^3)*(1 - x - 2*x^2 - x^3)).
a(n) = 7*a(n-1) - 18*a(n-2) + 20*a(n-3) - 6*a(n-4) - 6*a(n-5) + 5*a(n-6) - a(n-7) for n>10.
(End)