This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A301895 #4 Mar 28 2018 15:20:39 %S A301895 0,1,1,1,1,2,2,1,1,4,4,3,4,3,3,1,1,8,8,9,8,9,9,4,8,9,9,4,9,4,4,1,1,16, %T A301895 16,27,16,27,27,16,16,27,27,16,27,16,16,5,16,27,27,16,27,16,16,5,27, %U A301895 16,16,5,16,5,5,1,1,32,32,81,32,81,81,64,32,81,81,64,81,64,64,25,32 %N A301895 a(n) = (number of 1's in binary expansion of n)^(number of 0's in binary expansion of n). %C A301895 Union of A000079 and A000225 without zero gives positions of ones. %H A301895 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A301895 a(n) = A000120(n)^A023416(n). %F A301895 a(A000051(n)) = A011782(n). %e A301895 +---+------+---+---+---------+ %e A301895 | n | bin. |1's|0's| a(n) | %e A301895 +---+------+---+---+---------+ %e A301895 | 0 | 0 | 0 | 1 | 0^1 = 0 | %e A301895 | 1 | 1 | 1 | 0 | 1^0 = 1 | %e A301895 | 2 | 10 | 1 | 1 | 1^1 = 1 | %e A301895 | 3 | 11 | 2 | 0 | 2^0 = 1 | %e A301895 | 4 | 100 | 1 | 2 | 1^2 = 1 | %e A301895 | 5 | 101 | 2 | 1 | 2^1 = 2 | %e A301895 | 6 | 110 | 2 | 1 | 2^1 = 2 | %e A301895 | 7 | 111 | 3 | 0 | 3^0 = 1 | %e A301895 | 8 | 1000 | 1 | 3 | 1^3 = 1 | %e A301895 | 9 | 1001 | 2 | 2 | 2^2 = 4 | %e A301895 +---+------+---+---+---------+ %e A301895 bin. - n written in base 2; %e A301895 1's - number of 1's in binary expansion of n; %e A301895 0's - number of 0's in binary expansion of n. %t A301895 DigitCount[Range[0, 80], 2, 1]^DigitCount[Range[0, 80], 2, 0] %Y A301895 Cf. A000051, A000079, A000120, A000225, A011782, A023416, A037861, A070939, A071295, A245788. %K A301895 nonn,base %O A301895 0,6 %A A301895 _Ilya Gutkovskiy_, Mar 28 2018