cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301899 Heinz numbers of strict knapsack partitions. Squarefree numbers such that every divisor has a different Heinz weight A056239(d).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105, 106, 107, 109
Offset: 1

Views

Author

Gus Wiseman, Mar 28 2018

Keywords

Comments

An integer partition is knapsack if every distinct submultiset has a different sum. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			42 is the Heinz number of (4,2,1) which is strict and knapsack, so is in the sequence. 45 is the Heinz number of (3,2,2) which is knapsack but not strict, so is not in the sequence. 30 is the Heinz number of (3,2,1) which is strict but not knapsack, so is not in the sequence.
Sequence of strict knapsack partitions begins: (), (1), (2), (3), (21), (4), (31), (5), (6), (41), (32), (7), (8), (42), (51), (9), (61).
		

Crossrefs

Programs

  • Mathematica
    wt[n_]:=If[n===1,0,Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimePi[p]]]];
    Select[Range[100],SquareFreeQ[#]&&UnsameQ@@wt/@Divisors[#]&]

Formula

Intersection of A299702 and A005117.