A301904 Number of nX6 0..1 arrays with every element equal to 0, 2 or 3 horizontally or antidiagonally adjacent elements, with upper left element zero.
1, 6, 7, 40, 92, 532, 1999, 10150, 46226, 234484, 1167106, 6013755, 31027951, 161979950, 848039052, 4458470286, 23481316334, 123866264459, 653972874084, 3454977358732, 18260006314624, 96532215568355, 510408646716334
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..1..1..1..1..1. .0..1..1..0..0..1. .0..1..1..1..1..1. .0..1..1..1..1..1 ..1..1..0..1..1..1. .1..1..0..0..0..0. .1..1..0..1..1..0. .1..1..0..1..1..0 ..1..1..1..0..1..0. .0..1..1..0..0..1. .1..1..1..0..1..0. .0..1..0..1..1..1 ..0..1..1..1..1..1. .1..1..1..1..0..0. .0..1..1..0..1..1. .0..1..1..0..1..1 ..1..1..0..1..1..0. .0..1..1..0..0..1. .1..1..1..1..1..0. .1..1..1..1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A301906.
Formula
Empirical: a(n) = 3*a(n-1) +22*a(n-2) -23*a(n-3) -132*a(n-4) -102*a(n-5) -188*a(n-6) +202*a(n-7) +1241*a(n-8) +242*a(n-9) -1952*a(n-10) -662*a(n-11) +1583*a(n-12) +498*a(n-13) -772*a(n-14) -182*a(n-15) +220*a(n-16) +31*a(n-17) -22*a(n-18) -7*a(n-19) +a(n-20) for n>21
Comments