A301905 Number of nX7 0..1 arrays with every element equal to 0, 2 or 3 horizontally or antidiagonally adjacent elements, with upper left element zero.
1, 10, 12, 96, 320, 1934, 8781, 49709, 253844, 1413100, 7620270, 42580016, 235818861, 1324997099, 7432214130, 41943560072, 236751899580, 1339917222874, 7587029374109, 43012592771281, 243943851904936, 1384324886282580
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..1..1..0..0..0..1. .0..1..1..1..1..1..1. .0..1..1..0..0..0..0 ..1..1..0..0..0..0..0. .1..1..0..1..1..1..0. .1..1..0..0..1..0..0 ..0..1..1..1..1..0..0. .1..1..1..0..0..1..1. .0..1..0..0..1..0..0 ..1..1..0..1..1..0..0. .1..1..0..0..1..1..0. .0..1..0..0..1..0..0 ..1..1..1..1..0..0..1. .1..1..1..1..0..1..0. .0..1..0..0..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A301906.
Formula
Empirical: a(n) = 19*a(n-1) -129*a(n-2) +266*a(n-3) +1113*a(n-4) -7787*a(n-5) +16342*a(n-6) +7083*a(n-7) -129016*a(n-8) +332445*a(n-9) -231596*a(n-10) -894953*a(n-11) +2912737*a(n-12) -3222398*a(n-13) -2103447*a(n-14) +12042025*a(n-15) -15194193*a(n-16) -250412*a(n-17) +24253854*a(n-18) -27506576*a(n-19) +1889508*a(n-20) +22587616*a(n-21) -20220872*a(n-22) +2087728*a(n-23) +8489920*a(n-24) -6518528*a(n-25) +1174848*a(n-26) +1096960*a(n-27) -792192*a(n-28) +188672*a(n-29) -9216*a(n-30) for n>33
Comments