cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301939 Integers whose arithmetic derivative is equal to their Dedekind function.

This page as a plain text file.
%I A301939 #25 Feb 23 2022 22:53:47
%S A301939 8,81,108,2500,2700,3375,5292,13068,15625,18252,31212,38988,57132,
%T A301939 67228,90828,94500,103788,147852,181548,199692,231525,238572,303372,
%U A301939 375948,401868,484812,544428,575532,674028,713097,744012,855468,1016172,1058841,1101708,1145772
%N A301939 Integers whose arithmetic derivative is equal to their Dedekind function.
%C A301939 If n = Product_{k=1..j} p_k ^ i_k with each p_k prime, then psi(n) = n * Product_{k=1..j} (p_k + 1)/p_k and n' = n*Sum_{k=1..j} i_k/p_k.
%C A301939 Thus every number of the form p^(p+1), where p is prime, is in the sequence.
%C A301939 The sequence also contains every number of the form 108*p^2 where p is a prime > 3, or 108*p^3*(p+2) where p > 3 is in A001359. - _Robert Israel_, Mar 29 2018
%H A301939 Paolo P. Lava, <a href="/A301939/b301939.txt">Table of n, a(n) for n = 1..100</a>
%F A301939 Solutions of the equation n' = psi(n).
%e A301939 5292 = 2^2 * 3^3 * 7^2.
%e A301939 n' = 5292*(2/2 + 3/3 + 2/7) = 12096,
%e A301939 psi(n) = 5292*(1 + 1/2)*(1 + 1/3)*(1 + 1/7) = 12096.
%p A301939 with(numtheory): P:=proc(n) local a,p; a:=ifactors(n)[2];
%p A301939 if add(op(2,p)/op(1,p),p=a)=mul(1+1/op(1,p),p=a) then n; fi; end:
%p A301939 seq(P(i),i=1..10^6);
%t A301939 selQ[n_] := Module[{f = FactorInteger[n], p, e}, Product[{p, e} = pe; p^e + p^(e-1), {pe, f}] == Sum[{p, e} = pe; (n/p)e, {pe, f}]];
%t A301939 Select[Range[10^6], selQ] (* _Jean-François Alcover_, Oct 16 2020 *)
%o A301939 (PARI) dpsi(f) = prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1));
%o A301939 ader(n, f) = sum(i=1, #f~, n/f[i, 1]*f[i, 2]);
%o A301939 isok(n) = my(f=factor(n)); dpsi(f) == ader(n, f); \\ _Michel Marcus_, Mar 29 2018
%Y A301939 Cf. A001359, A001615, A003415, A166374, A342458. A345005 (gives the odd terms).
%Y A301939 Subsequence of A345003.
%K A301939 nonn,easy
%O A301939 1,1
%A A301939 _Paolo P. Lava_, Mar 29 2018