cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A301945 Number of n X n 0..1 arrays with every element equal to 1, 2 or 3 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 2, 20, 947, 120815, 58609226, 86143630040, 418568449327270, 6527100767589040926, 331808147283786972146018, 54543586667142977292165721500, 29084806316831133817614992597097070
Offset: 1

Views

Author

R. H. Hardin, Mar 29 2018

Keywords

Comments

Diagonal of A301951.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..1..1. .0..0..1..1..0. .0..0..0..1..1
..0..1..0..1..1. .0..1..0..0..0. .0..1..1..0..0. .0..1..0..0..0
..1..1..1..0..0. .1..0..1..1..0. .1..0..1..0..0. .1..1..1..0..0
..1..0..0..0..1. .0..0..1..0..1. .0..1..1..1..1. .1..0..0..1..0
..1..1..1..1..1. .0..1..0..1..1. .1..0..0..0..0. .0..1..1..0..0
		

Crossrefs

Cf. A301951.

A301946 Number of nX3 0..1 arrays with every element equal to 1, 2 or 3 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 5, 20, 83, 342, 1411, 5820, 24007, 99026, 408471, 1684896, 6950003, 28667966, 118252075, 487776260, 2012021183, 8299356842, 34233896031, 141210898600, 582478776747, 2402658213526, 9910689833651, 40880459994636, 168627213385143
Offset: 1

Views

Author

R. H. Hardin, Mar 29 2018

Keywords

Comments

Column 3 of A301951.

Examples

			Some solutions for n=5
..0..0..1. .0..0..1. .0..0..1. .0..0..0. .0..0..1. .0..0..0. .0..0..1
..0..1..1. .0..1..1. .0..1..1. .0..1..1. .1..1..0. .0..0..1. .0..1..0
..1..0..0. .0..0..1. .1..1..1. .0..0..0. .1..0..0. .0..1..1. .0..0..1
..0..0..1. .0..1..1. .0..0..0. .1..1..1. .1..1..0. .1..1..0. .1..1..0
..1..1..1. .1..1..1. .1..1..1. .1..0..0. .1..0..0. .0..0..0. .1..0..0
		

Crossrefs

Cf. A301951.

Formula

Empirical: a(n) = 4*a(n-1) +a(n-2) -2*a(n-3)

A301947 Number of nX4 0..1 arrays with every element equal to 1, 2 or 3 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

2, 16, 123, 947, 7326, 56710, 439078, 3399722, 26323903, 203825456, 1578217598, 12220118582, 94620225492, 732643232114, 5672847473255, 43924787764759, 340109088005893, 2633460459021237, 20390851741033347, 157886112662767667
Offset: 1

Views

Author

R. H. Hardin, Mar 29 2018

Keywords

Comments

Column 4 of A301951.

Examples

			Some solutions for n=5
..0..0..1..0. .0..0..1..1. .0..0..1..1. .0..0..0..0. .0..0..0..0
..0..1..0..1. .0..0..1..1. .1..1..0..1. .0..0..1..1. .0..1..0..1
..0..0..1..1. .0..0..0..1. .1..0..1..1. .0..1..1..1. .1..0..1..1
..0..1..0..0. .1..1..1..0. .0..0..0..1. .1..0..1..0. .0..0..1..0
..0..0..0..0. .1..1..0..0. .1..1..1..1. .0..1..0..0. .0..0..0..0
		

Crossrefs

Cf. A301951.

Formula

Empirical: a(n) = 9*a(n-1) -8*a(n-2) -14*a(n-3) +4*a(n-4) +4*a(n-5) -a(n-6)

A301948 Number of nX5 0..1 arrays with every element equal to 1, 2 or 3 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

3, 52, 680, 9084, 120815, 1608681, 21418808, 285190208, 3797277789, 50560399640, 673206912325, 8963686254378, 119350632636165, 1589142359440249, 21159279866124406, 281733805537736001, 3751258912615316186
Offset: 1

Views

Author

R. H. Hardin, Mar 29 2018

Keywords

Comments

Column 5 of A301951.

Examples

			Some solutions for n=5
..0..0..1..1..1. .0..0..0..0..1. .0..0..1..1..0. .0..0..1..0..0
..0..0..0..0..0. .0..1..0..1..1. .0..1..0..0..0. .0..1..0..1..0
..0..0..1..1..1. .1..0..0..0..0. .1..1..1..0..0. .1..1..1..0..0
..0..0..0..0..0. .0..0..1..1..1. .1..0..0..1..1. .0..0..0..1..1
..0..0..0..0..0. .1..1..1..1..1. .1..1..1..1..1. .0..0..0..1..1
		

Crossrefs

Cf. A301951.

Formula

Empirical: a(n) = 16*a(n-1) -29*a(n-2) -114*a(n-3) +324*a(n-4) +8*a(n-5) -709*a(n-6) +690*a(n-7) +158*a(n-8) -448*a(n-9) -34*a(n-10) +116*a(n-11) +27*a(n-12) -4*a(n-13) for n>15

A301949 Number of nX6 0..1 arrays with every element equal to 1, 2 or 3 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

5, 169, 4070, 98839, 2406169, 58609226, 1427656268, 34776685046, 847137052736, 20635714219606, 502672812882802, 12244789017184793, 298275250691010051, 7265794879094161325, 176990129491522032721, 4311366679215895257906
Offset: 1

Views

Author

R. H. Hardin, Mar 29 2018

Keywords

Comments

Column 6 of A301951.

Examples

			Some solutions for n=5
..0..0..1..1..0..1. .0..0..0..0..0..1. .0..0..1..1..1..0. .0..0..0..0..0..0
..0..0..0..0..1..0. .0..1..1..0..1..1. .0..0..0..1..0..0. .0..0..1..1..1..1
..0..1..1..0..0..0. .0..0..1..1..0..0. .0..1..1..1..1..0. .0..0..1..1..0..0
..0..0..1..1..0..0. .0..0..0..1..0..0. .0..0..1..1..0..0. .0..1..0..1..1..1
..0..1..0..0..1..1. .0..0..1..1..1..1. .0..1..1..0..1..1. .0..0..1..0..0..0
		

Crossrefs

Cf. A301951.

Formula

Empirical: a(n) = 33*a(n-1) -194*a(n-2) -715*a(n-3) +7892*a(n-4) -2145*a(n-5) -104797*a(n-6) +126737*a(n-7) +639098*a(n-8) -780482*a(n-9) -2453736*a(n-10) +1736864*a(n-11) +5706799*a(n-12) -506462*a(n-13) -5848822*a(n-14) -644915*a(n-15) +3230474*a(n-16) +509931*a(n-17) -1056960*a(n-18) -144139*a(n-19) +202757*a(n-20) +17729*a(n-21) -20624*a(n-22) -825*a(n-23) +894*a(n-24) +25*a(n-25) -16*a(n-26) for n>28

A301950 Number of nX7 0..1 arrays with every element equal to 1, 2 or 3 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 549, 23565, 1029960, 45013365, 1969215107, 86143630040, 3768464135104, 164856325277648, 7211859806584972, 315492435721284502, 13801638251948339606, 603771111706342632388, 26412774266222749814259
Offset: 1

Views

Author

R. H. Hardin, Mar 29 2018

Keywords

Comments

Column 7 of A301951.

Examples

			Some solutions for n=5
..0..0..1..1..1..1..0. .0..0..1..1..1..1..1. .0..0..1..1..1..0..0
..0..0..0..0..1..0..1. .0..0..0..0..0..0..1. .0..0..0..0..1..0..1
..0..0..1..1..1..1..0. .0..0..1..1..0..1..1. .0..0..1..1..0..1..1
..0..0..0..1..1..0..0. .0..0..0..0..1..0..1. .0..0..0..0..0..0..1
..0..0..0..0..1..1..1. .0..0..0..0..0..1..1. .0..0..1..1..0..1..1
		

Crossrefs

Cf. A301951.

Formula

Empirical: a(n) = 64*a(n-1) -839*a(n-2) -5242*a(n-3) +147362*a(n-4) -153362*a(n-5) -9475658*a(n-6) +28777576*a(n-7) +318339402*a(n-8) -1185024188*a(n-9) -6711791018*a(n-10) +24015282348*a(n-11) +100290975324*a(n-12) -276220618432*a(n-13) -1092218614448*a(n-14) +1809378532768*a(n-15) +8381318969064*a(n-16) -5547141136292*a(n-17) -43048893696882*a(n-18) -5137214033550*a(n-19) +138723299981218*a(n-20) +103837461034320*a(n-21) -249665678213809*a(n-22) -352515712028408*a(n-23) +171279537015488*a(n-24) +541632747814928*a(n-25) +119479093580776*a(n-26) -378401338237562*a(n-27) -246736419083125*a(n-28) +88641851815866*a(n-29) +121670588033711*a(n-30) +6214746226660*a(n-31) -25619915739633*a(n-32) -4730140054470*a(n-33) +2873067267800*a(n-34) +639326441636*a(n-35) -187231673608*a(n-36) -34700853920*a(n-37) +6530040896*a(n-38) +743196096*a(n-39) -66946176*a(n-40) -16244992*a(n-41) +854016*a(n-42) +56320*a(n-43) for n>47

A301952 Number of 3Xn 0..1 arrays with every element equal to 1, 2 or 3 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 5, 20, 123, 680, 4070, 23565, 138014, 805249, 4704141, 27469522, 160428571, 936897912, 5471539885, 31953953498, 186612354231, 1089822896327, 6364606387628, 37169536347339, 217071469820879, 1267705419106309
Offset: 1

Views

Author

R. H. Hardin, Mar 29 2018

Keywords

Comments

Row 3 of A301951.

Examples

			Some solutions for n=5
..0..0..0..1..1. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..1..0
..0..1..0..1..1. .0..1..1..1..1. .1..1..1..0..0. .0..1..1..0..0
..1..0..0..1..1. .1..0..0..1..1. .0..0..0..0..0. .0..0..1..1..1
		

Crossrefs

Cf. A301951.

Formula

Empirical: a(n) = 4*a(n-1) +12*a(n-2) -5*a(n-3) -14*a(n-4) +14*a(n-6) +4*a(n-7) -3*a(n-8) -5*a(n-9) +a(n-10) for n>12

A301953 Number of 4Xn 0..1 arrays with every element equal to 1, 2 or 3 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 13, 83, 947, 9084, 98839, 1029960, 10839822, 113808922, 1195709047, 12560090528, 131941626696, 1386007798945, 14559641418947, 152945061251677, 1606646289820269, 16877382303769959, 177292310984136323
Offset: 1

Views

Author

R. H. Hardin, Mar 29 2018

Keywords

Comments

Row 4 of A301951.

Examples

			Some solutions for n=5
..0..0..1..0..0. .0..0..0..0..0. .0..0..1..1..0. .0..0..1..1..1
..0..1..0..0..0. .0..0..1..1..1. .0..1..1..0..1. .0..1..0..0..1
..1..0..1..0..0. .0..1..0..0..0. .1..0..0..1..1. .1..1..0..1..0
..0..1..0..1..1. .1..0..0..1..1. .0..0..0..0..0. .1..1..0..0..0
		

Crossrefs

Cf. A301951.

Formula

Empirical: a(n) = 7*a(n-1) +51*a(n-2) -82*a(n-3) -768*a(n-4) +138*a(n-5) +5682*a(n-6) +2208*a(n-7) -27378*a(n-8) -19646*a(n-9) +108234*a(n-10) +113576*a(n-11) -351398*a(n-12) -518894*a(n-13) +797178*a(n-14) +1775528*a(n-15) -1138958*a(n-16) -4727986*a(n-17) +650274*a(n-18) +10582688*a(n-19) +3872450*a(n-20) -18087578*a(n-21) -17435194*a(n-22) +17909432*a(n-23) +24700399*a(n-24) -5946897*a(n-25) -6975733*a(n-26) -3960654*a(n-27) +1318878*a(n-28) +806952*a(n-29) +364004*a(n-30) -117352*a(n-31) -127336*a(n-32) +19920*a(n-33) +21504*a(n-34) +1728*a(n-35) -3456*a(n-36) for n>40

A301954 Number of 5Xn 0..1 arrays with every element equal to 1, 2 or 3 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 34, 342, 7326, 120815, 2406169, 45013365, 854043977, 16129710295, 305221439281, 5771629701788, 109164158236088, 2064580944616050, 39047423296702605, 738499892840155074, 13967193695049173564
Offset: 1

Views

Author

R. H. Hardin, Mar 29 2018

Keywords

Comments

Row 5 of A301951.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..1..1..1. .0..0..0..0..0. .0..0..1..0..1
..0..1..0..1..1. .0..1..0..0..0. .0..0..0..0..0. .1..1..0..1..0
..1..0..1..0..0. .0..0..1..1..0. .1..1..1..0..0. .1..1..1..0..0
..0..1..1..1..0. .0..1..0..0..1. .1..0..0..0..1. .1..0..0..1..1
..1..1..0..0..0. .0..0..0..1..1. .1..1..0..1..1. .0..0..1..1..1
		

Crossrefs

Cf. A301951.

A301955 Number of 6Xn 0..1 arrays with every element equal to 1, 2 or 3 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 89, 1411, 56710, 1608681, 58609226, 1969215107, 67333850084, 2287773842566, 77959998302605, 2653916633152707, 90371628086108933, 3077076307444521060, 104774663297551634379, 3567555401986729558326, 121474804497455764013977
Offset: 1

Views

Author

R. H. Hardin, Mar 29 2018

Keywords

Comments

Row 6 of A301951.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..1..0..0..0. .0..0..0..1..1. .0..1..0..0..0. .0..1..0..1..1
..1..1..1..0..1. .1..1..1..1..1. .1..1..1..1..0. .1..0..0..0..1
..1..0..1..1..1. .0..0..0..1..1. .0..0..0..0..0. .1..1..1..1..1
..0..1..0..1..1. .1..1..0..1..0. .1..1..1..1..0. .0..0..0..1..0
..0..0..0..1..1. .1..0..0..0..0. .1..1..1..0..0. .1..1..0..0..0
		

Crossrefs

Cf. A301951.
Showing 1-10 of 11 results. Next