A301963 Number of n X 7 0..1 arrays with every element equal to 0, 1 or 4 horizontally or antidiagonally adjacent elements, with upper left element zero.
21, 35, 132, 443, 1803, 7795, 33860, 148299, 646838, 2827081, 12348295, 53946658, 235669276, 1029543928, 4497666250, 19648472006, 85836276153, 374983965881, 1638153628134, 7156431645355, 31263560215566, 136577871103739
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..1..0..1..0..1. .0..0..1..0..1..0..1. .0..0..1..1..0..1..0 ..1..0..1..0..1..0..1. .1..0..0..0..1..1..1. .1..0..0..1..0..1..0 ..1..0..1..0..1..1..1. .1..0..1..0..1..0..0. .1..1..0..1..1..1..0 ..1..1..1..0..1..0..1. .1..0..0..0..1..1..0. .0..0..0..1..0..1..1 ..1..0..1..0..1..0..1. .1..0..1..0..0..1..1. .0..1..0..1..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A301964.
Formula
Empirical: a(n) = a(n-1) +13*a(n-2) +13*a(n-3) -19*a(n-4) -27*a(n-5) +16*a(n-6) +32*a(n-7) -23*a(n-8) -43*a(n-9) +45*a(n-10) +11*a(n-11) -29*a(n-12) +13*a(n-13) -2*a(n-14) for n>17.
Comments