This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A301964 #4 Mar 29 2018 13:02:06 %S A301964 1,2,2,3,5,4,5,6,13,8,8,9,16,34,16,13,14,25,40,89,32,21,22,41,64,100, %T A301964 233,64,34,35,74,111,169,252,610,128,55,56,132,219,311,441,632,1597, %U A301964 256,89,90,239,443,749,874,1156,1588,4181,512,144,145,437,904,1803,2544,2454 %N A301964 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1 or 4 horizontally or antidiagonally adjacent elements, with upper left element zero. %C A301964 Table starts %C A301964 ...1....2....3....5.....8.....13.....21......34.......55........89.......144 %C A301964 ...2....5....6....9....14.....22.....35......56.......90.......145.......234 %C A301964 ...4...13...16...25....41.....74....132.....239......437.......800......1468 %C A301964 ...8...34...40...64...111....219....443.....904.....1860......3856......8015 %C A301964 ..16...89..100..169...311....749...1803....4257....10353.....25491.....62623 %C A301964 ..32..233..252..441...874...2544...7795...22456....66659....203926....621905 %C A301964 ..64..610..632.1156..2454...8705..33860..120603...444357...1715911...6574776 %C A301964 .128.1597.1588.3025..6906..29750.148299..655332..3014296..14863160..72345489 %C A301964 .256.4181.3988.7921.19427.101869.646838.3557239.20467528.129324707.802690313 %H A301964 R. H. Hardin, <a href="/A301964/b301964.txt">Table of n, a(n) for n = 1..880</a> %F A301964 Empirical for column k: %F A301964 k=1: a(n) = 2*a(n-1) %F A301964 k=2: a(n) = 3*a(n-1) -a(n-2) %F A301964 k=3: a(n) = a(n-1) +3*a(n-2) +2*a(n-3) %F A301964 k=4: a(n) = 2*a(n-1) +2*a(n-2) -a(n-3) for n>4 %F A301964 k=5: a(n) = 2*a(n-1) +3*a(n-2) -a(n-3) -2*a(n-4) -3*a(n-5) +2*a(n-6) for n>8 %F A301964 k=6: [order 11] for n>12 %F A301964 k=7: [order 14] for n>17 %F A301964 Empirical for row n: %F A301964 n=1: a(n) = a(n-1) +a(n-2) %F A301964 n=2: a(n) = 2*a(n-1) -a(n-3) for n>5 %F A301964 n=3: a(n) = 2*a(n-1) -a(n-4) for n>6 %F A301964 n=4: a(n) = 2*a(n-1) +a(n-3) -a(n-4) -2*a(n-6) +a(n-7) for n>9 %F A301964 n=5: [order 14] for n>17 %F A301964 n=6: [order 27] for n>32 %F A301964 n=7: [order 47] for n>52 %e A301964 Some solutions for n=5 k=4 %e A301964 ..0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..1..0. .0..0..1..0 %e A301964 ..0..1..0..1. .0..0..0..1. .0..1..0..1. .0..0..1..0. .1..1..1..0 %e A301964 ..0..0..0..1. .0..1..0..1. .0..1..0..1. .1..0..1..1. .1..0..1..0 %e A301964 ..0..1..1..1. .0..1..1..1. .1..0..1..0. .1..0..0..1. .0..1..0..1 %e A301964 ..0..1..0..1. .0..1..0..1. .1..0..1..1. .1..1..0..1. .0..1..0..1 %Y A301964 Column 1 is A000079(n-1). %Y A301964 Column 2 is A001519(n+1). %Y A301964 Row 1 is A000045(n+1). %Y A301964 Row 2 is A301791. %K A301964 nonn,tabl %O A301964 1,2 %A A301964 _R. H. Hardin_, Mar 29 2018