cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A301958 Number of n X n 0..1 arrays with every element equal to 0, 1 or 4 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 5, 16, 64, 311, 2544, 33860, 655332, 20467528, 1126897464, 99461928147, 13746050749383, 3153776142960984, 1195380968976593488, 725993180042754573732, 714087263476969685695404
Offset: 1

Views

Author

R. H. Hardin, Mar 29 2018

Keywords

Comments

Diagonal of A301964.

Examples

			Some solutions for n=5
..0..1..0..0..1. .0..0..1..0..1. .0..1..1..0..1. .0..1..1..0..1
..0..1..1..0..1. .1..0..1..0..1. .0..0..1..0..1. .0..0..1..1..1
..0..0..1..0..1. .1..1..1..0..0. .1..1..1..0..1. .1..0..1..0..1
..1..0..1..1..1. .1..0..1..1..0. .1..0..1..0..0. .1..0..0..0..1
..1..0..1..0..1. .1..0..0..1..1. .1..0..1..1..0. .1..0..1..0..0
		

Crossrefs

Cf. A301964.

A301959 Number of nX3 0..1 arrays with every element equal to 0, 1 or 4 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

3, 6, 16, 40, 100, 252, 632, 1588, 3988, 10016, 25156, 63180, 158680, 398532, 1000932, 2513888, 6313748, 15857276, 39826296, 100025620, 251219060, 630948512, 1584656932, 3979940588, 9995808408, 25104944036, 63052250436, 158358699360
Offset: 1

Views

Author

R. H. Hardin, Mar 29 2018

Keywords

Comments

Column 3 of A301964.

Examples

			Some solutions for n=5
..0..1..0. .0..1..0. .0..0..1. .0..1..0. .0..1..0. .0..1..0. .0..0..1
..1..0..1. .1..0..1. .1..0..1. .0..1..0. .0..1..0. .0..0..0. .1..0..1
..1..1..1. .1..1..1. .1..1..1. .0..1..0. .0..1..1. .0..1..0. .0..1..0
..1..0..0. .1..0..1. .1..0..0. .0..1..1. .0..0..1. .0..1..0. .0..1..0
..1..1..0. .1..0..0. .1..1..0. .0..0..1. .1..0..1. .0..1..1. .0..1..0
		

Crossrefs

Cf. A301964.

Formula

Empirical: a(n) = a(n-1) +3*a(n-2) +2*a(n-3)

A301960 Number of nX4 0..1 arrays with every element equal to 0, 1 or 4 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

5, 9, 25, 64, 169, 441, 1156, 3025, 7921, 20736, 54289, 142129, 372100, 974169, 2550409, 6677056, 17480761, 45765225, 119814916, 313679521, 821223649, 2149991424, 5628750625, 14736260449, 38580030724, 101003831721, 264431464441
Offset: 1

Views

Author

R. H. Hardin, Mar 29 2018

Keywords

Comments

Column 4 of A301964.

Examples

			Some solutions for n=5
..0..0..1..0. .0..1..1..0. .0..0..1..0. .0..1..0..1. .0..1..0..1
..1..1..1..0. .0..0..1..0. .1..1..1..0. .0..1..1..1. .0..1..0..1
..1..0..1..0. .1..0..1..0. .1..0..1..1. .0..1..0..1. .1..0..1..0
..1..0..0..0. .1..0..1..0. .1..0..0..1. .0..0..0..1. .1..0..1..1
..1..0..1..1. .1..0..1..0. .1..1..0..0. .0..1..0..0. .1..0..0..1
		

Crossrefs

Cf. A301964.

Formula

Empirical: a(n) = 2*a(n-1) +2*a(n-2) -a(n-3) for n>4

A301961 Number of nX5 0..1 arrays with every element equal to 0, 1 or 4 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 14, 41, 111, 311, 874, 2454, 6906, 19427, 54659, 153785, 432694, 1217420, 3425350, 9637573, 27116351, 76294719, 214663346, 603978142, 1699356882, 4781321499, 13452757355, 37850765441, 106497159950, 299641101508, 843072151982
Offset: 1

Views

Author

R. H. Hardin, Mar 29 2018

Keywords

Comments

Column 5 of A301964.

Examples

			Some solutions for n=5
..0..1..0..0..1. .0..0..1..1..0. .0..0..1..0..0. .0..0..1..0..1
..0..1..1..0..1. .1..0..0..1..1. .1..0..1..1..0. .1..0..1..0..1
..0..0..1..0..1. .1..1..0..0..1. .1..0..0..1..1. .1..0..0..0..1
..1..0..1..0..1. .0..1..1..0..1. .1..1..0..0..1. .1..0..1..0..1
..1..0..1..0..1. .0..0..1..0..0. .0..1..1..0..0. .1..0..1..0..1
		

Crossrefs

Cf. A301964.

Formula

Empirical: a(n) = 2*a(n-1) +3*a(n-2) -a(n-3) -2*a(n-4) -3*a(n-5) +2*a(n-6) for n>8

A301962 Number of nX6 0..1 arrays with every element equal to 0, 1 or 4 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

13, 22, 74, 219, 749, 2544, 8705, 29750, 101869, 348726, 1194018, 4088095, 13997248, 47925030, 164090446, 561828851, 1923644742, 6586363735, 22551038555, 77212460575, 264367602921, 905167759481, 3099202251216, 10611352989541
Offset: 1

Views

Author

R. H. Hardin, Mar 29 2018

Keywords

Comments

Column 6 of A301964.

Examples

			Some solutions for n=5
..0..0..1..0..1..0. .0..0..1..0..1..0. .0..1..1..0..1..0. .0..1..0..1..0..1
..1..1..1..0..1..1. .1..0..0..0..1..0. .0..0..1..0..1..0. .0..0..0..1..1..1
..1..0..1..0..0..1. .1..0..1..0..0..0. .1..0..0..0..1..0. .0..1..0..1..0..1
..1..0..1..1..0..0. .1..1..1..0..1..0. .1..0..1..1..1..0. .0..1..0..1..1..1
..1..0..0..1..1..0. .1..0..1..0..1..1. .1..0..1..0..1..1. .0..1..0..1..0..1
		

Crossrefs

Cf. A301964.

Formula

Empirical: a(n) = a(n-1) +8*a(n-2) +4*a(n-3) -8*a(n-4) -7*a(n-5) -a(n-6) -3*a(n-7) +a(n-8) +5*a(n-9) -3*a(n-10) +a(n-11) for n>12

A301963 Number of n X 7 0..1 arrays with every element equal to 0, 1 or 4 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

21, 35, 132, 443, 1803, 7795, 33860, 148299, 646838, 2827081, 12348295, 53946658, 235669276, 1029543928, 4497666250, 19648472006, 85836276153, 374983965881, 1638153628134, 7156431645355, 31263560215566, 136577871103739
Offset: 1

Views

Author

R. H. Hardin, Mar 29 2018

Keywords

Comments

Column 7 of A301964.

Examples

			Some solutions for n=5
..0..0..1..0..1..0..1. .0..0..1..0..1..0..1. .0..0..1..1..0..1..0
..1..0..1..0..1..0..1. .1..0..0..0..1..1..1. .1..0..0..1..0..1..0
..1..0..1..0..1..1..1. .1..0..1..0..1..0..0. .1..1..0..1..1..1..0
..1..1..1..0..1..0..1. .1..0..0..0..1..1..0. .0..0..0..1..0..1..1
..1..0..1..0..1..0..1. .1..0..1..0..0..1..1. .0..1..0..1..0..0..1
		

Crossrefs

Cf. A301964.

Formula

Empirical: a(n) = a(n-1) +13*a(n-2) +13*a(n-3) -19*a(n-4) -27*a(n-5) +16*a(n-6) +32*a(n-7) -23*a(n-8) -43*a(n-9) +45*a(n-10) +11*a(n-11) -29*a(n-12) +13*a(n-13) -2*a(n-14) for n>17.

A301965 Number of 3Xn 0..1 arrays with every element equal to 0, 1 or 4 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

4, 13, 16, 25, 41, 74, 132, 239, 437, 800, 1468, 2697, 4957, 9114, 16760, 30823, 56689, 104264, 191768, 352713, 648737, 1193210, 2194652, 4036591, 7424445, 13655680, 25116708, 46196825, 84969205, 156282730, 287448752, 528700679, 972432153
Offset: 1

Views

Author

R. H. Hardin, Mar 29 2018

Keywords

Comments

Row 3 of A301964.

Examples

			Some solutions for n=5
..0..0..1..1..0. .0..1..0..1..0. .0..0..1..1..0. .0..1..0..0..1
..1..0..0..1..0. .0..0..0..1..1. .1..0..0..1..1. .0..1..1..0..1
..1..1..0..1..1. .0..1..0..0..1. .1..1..0..0..1. .0..0..1..0..1
		

Crossrefs

Cf. A301964.

Formula

Empirical: a(n) = 2*a(n-1) -a(n-4) for n>6

A301966 Number of 4Xn 0..1 arrays with every element equal to 0, 1 or 4 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 34, 40, 64, 111, 219, 443, 904, 1860, 3856, 8015, 16659, 34647, 72088, 150004, 312144, 649555, 1351723, 2812951, 5853784, 12181816, 25350576, 52755019, 109784179, 228462939, 475435704, 989390720, 2058940864, 4284695031
Offset: 1

Views

Author

R. H. Hardin, Mar 29 2018

Keywords

Comments

Row 4 of A301964.

Examples

			Some solutions for n=5
..0..0..1..0..1. .0..1..0..1..0. .0..0..1..0..1. .0..1..0..1..0
..1..0..0..0..1. .0..1..0..1..0. .1..0..0..0..1. .0..1..0..0..0
..1..0..1..1..1. .0..1..0..1..0. .1..0..1..1..1. .0..1..0..1..0
..1..0..1..0..0. .1..0..1..0..1. .1..0..1..0..1. .0..1..0..1..0
		

Crossrefs

Cf. A301964.

Formula

Empirical: a(n) = 2*a(n-1) +a(n-3) -a(n-4) -2*a(n-6) +a(n-7) for n>9

A301967 Number of 5Xn 0..1 arrays with every element equal to 0, 1 or 4 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

16, 89, 100, 169, 311, 749, 1803, 4257, 10353, 25491, 62623, 154129, 380187, 938001, 2314659, 5713631, 14105377, 34823513, 85976895, 212277137, 524117847, 1294070913, 3195138873, 7889010751, 19478522291, 48093894353, 118747410843
Offset: 1

Views

Author

R. H. Hardin, Mar 29 2018

Keywords

Comments

Row 5 of A301964.

Examples

			Some solutions for n=5
..0..1..0..0..1. .0..0..1..0..0. .0..1..1..0..1. .0..1..0..1..0
..0..1..1..0..1. .1..0..1..1..0. .0..0..1..0..0. .0..0..0..1..0
..0..0..1..0..1. .1..0..0..1..1. .1..0..1..1..0. .0..1..0..0..0
..1..1..1..0..1. .1..1..0..0..1. .1..0..0..1..1. .0..1..0..1..1
..1..0..1..0..0. .0..1..1..0..0. .1..1..0..0..1. .0..1..0..0..1
		

Crossrefs

Cf. A301964.

Formula

Empirical: a(n) = 3*a(n-1) -2*a(n-2) +5*a(n-3) -8*a(n-4) +2*a(n-5) -9*a(n-6) +7*a(n-7) -a(n-8) +8*a(n-9) +a(n-10) -4*a(n-11) -3*a(n-13) +2*a(n-14) for n>17

A301968 Number of 6Xn 0..1 arrays with every element equal to 0, 1 or 4 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

32, 233, 252, 441, 874, 2544, 7795, 22456, 66659, 203926, 621905, 1891815, 5775564, 17661198, 53992136, 165070762, 504836902, 1544110348, 4722844581, 14445769443, 44186654928, 135159112990, 413428628386, 1264613037181, 3868263645434
Offset: 1

Views

Author

R. H. Hardin, Mar 29 2018

Keywords

Comments

Row 6 of A301964.

Examples

			Some solutions for n=5
..0..0..1..1..0. .0..1..0..1..0. .0..1..0..1..0. .0..1..0..1..0
..1..0..0..1..0. .0..1..1..1..0. .0..1..1..1..0. .0..0..0..1..0
..1..1..0..0..0. .0..1..0..1..0. .0..1..0..1..1. .0..1..1..1..0
..0..1..0..1..0. .0..0..0..1..0. .0..1..0..0..1. .0..1..0..1..0
..0..1..0..1..0. .0..1..0..0..0. .0..1..1..0..1. .0..0..0..1..0
..0..1..0..1..0. .0..1..0..1..1. .0..0..1..0..1. .0..1..0..1..0
		

Crossrefs

Cf. A301964.

Formula

Empirical: a(n) = 4*a(n-1) -5*a(n-2) +15*a(n-3) -27*a(n-4) +16*a(n-5) -59*a(n-6) +50*a(n-7) -13*a(n-8) +119*a(n-9) +11*a(n-10) +12*a(n-11) -125*a(n-12) -138*a(n-13) -13*a(n-14) +57*a(n-15) +150*a(n-16) +52*a(n-17) -27*a(n-18) -87*a(n-19) -36*a(n-20) +14*a(n-21) +34*a(n-22) +11*a(n-23) -8*a(n-24) -7*a(n-25) -a(n-26) +2*a(n-27) for n>32
Showing 1-10 of 11 results. Next