A301968 Number of 6Xn 0..1 arrays with every element equal to 0, 1 or 4 horizontally or antidiagonally adjacent elements, with upper left element zero.
32, 233, 252, 441, 874, 2544, 7795, 22456, 66659, 203926, 621905, 1891815, 5775564, 17661198, 53992136, 165070762, 504836902, 1544110348, 4722844581, 14445769443, 44186654928, 135159112990, 413428628386, 1264613037181, 3868263645434
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..1..1..0. .0..1..0..1..0. .0..1..0..1..0. .0..1..0..1..0 ..1..0..0..1..0. .0..1..1..1..0. .0..1..1..1..0. .0..0..0..1..0 ..1..1..0..0..0. .0..1..0..1..0. .0..1..0..1..1. .0..1..1..1..0 ..0..1..0..1..0. .0..0..0..1..0. .0..1..0..0..1. .0..1..0..1..0 ..0..1..0..1..0. .0..1..0..0..0. .0..1..1..0..1. .0..0..0..1..0 ..0..1..0..1..0. .0..1..0..1..1. .0..0..1..0..1. .0..1..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A301964.
Formula
Empirical: a(n) = 4*a(n-1) -5*a(n-2) +15*a(n-3) -27*a(n-4) +16*a(n-5) -59*a(n-6) +50*a(n-7) -13*a(n-8) +119*a(n-9) +11*a(n-10) +12*a(n-11) -125*a(n-12) -138*a(n-13) -13*a(n-14) +57*a(n-15) +150*a(n-16) +52*a(n-17) -27*a(n-18) -87*a(n-19) -36*a(n-20) +14*a(n-21) +34*a(n-22) +11*a(n-23) -8*a(n-24) -7*a(n-25) -a(n-26) +2*a(n-27) for n>32
Comments