cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301969 Number of 7Xn 0..1 arrays with every element equal to 0, 1 or 4 horizontally or antidiagonally adjacent elements, with upper left element zero.

This page as a plain text file.
%I A301969 #4 Mar 29 2018 13:05:40
%S A301969 64,610,632,1156,2454,8705,33860,120603,444357,1715911,6574776,
%T A301969 25055403,96049774,368934080,1415983660,5435511772,20873907896,
%U A301969 80167521480,307889914336,1182522157914,4541861862000,17444676630768,67003068862917
%N A301969 Number of 7Xn 0..1 arrays with every element equal to 0, 1 or 4 horizontally or antidiagonally adjacent elements, with upper left element zero.
%C A301969 Row 7 of A301964.
%H A301969 R. H. Hardin, <a href="/A301969/b301969.txt">Table of n, a(n) for n = 1..210</a>
%F A301969 Empirical: a(n) = 2*a(n-1) +31*a(n-3) +10*a(n-4) +30*a(n-5) -282*a(n-6) -548*a(n-7) -1110*a(n-8) -220*a(n-9) +2288*a(n-10) +7498*a(n-11) +11635*a(n-12) +8602*a(n-13) -7081*a(n-14) -33921*a(n-15) -52592*a(n-16) -42945*a(n-17) +4748*a(n-18) +65470*a(n-19) +93586*a(n-20) +61066*a(n-21) -17191*a(n-22) -82766*a(n-23) -86139*a(n-24) -28107*a(n-25) +39729*a(n-26) +63115*a(n-27) +34943*a(n-28) -9501*a(n-29) -29505*a(n-30) -17331*a(n-31) +4542*a(n-32) +13303*a(n-33) +6480*a(n-34) -2878*a(n-35) -5323*a(n-36) -2066*a(n-37) +1003*a(n-38) +1389*a(n-39) +444*a(n-40) -173*a(n-41) -193*a(n-42) -60*a(n-43) +5*a(n-44) +9*a(n-45) +4*a(n-46) +a(n-47) for n>52
%e A301969 Some solutions for n=5
%e A301969 ..0..1..0..1..1. .0..0..1..0..1. .0..1..1..0..1. .0..1..0..1..0
%e A301969 ..0..1..0..0..1. .1..0..1..0..1. .0..0..1..0..1. .0..1..0..1..0
%e A301969 ..0..1..1..0..1. .1..1..1..0..0. .1..0..1..1..1. .1..0..1..0..1
%e A301969 ..0..0..1..0..1. .1..0..1..1..0. .1..0..1..0..1. .1..0..1..1..1
%e A301969 ..1..1..1..0..1. .1..0..0..1..0. .1..0..1..0..0. .1..0..1..0..1
%e A301969 ..1..0..1..0..1. .1..1..0..0..0. .1..0..1..1..0. .1..0..1..0..0
%e A301969 ..1..0..1..0..1. .0..1..0..1..1. .1..0..0..1..0. .1..0..1..1..0
%Y A301969 Cf. A301964.
%K A301969 nonn
%O A301969 1,1
%A A301969 _R. H. Hardin_, Mar 29 2018