This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A301970 #5 Apr 08 2018 20:10:20 %S A301970 165,273,325,351,495,525,561,595,675,741,765,819,825,931,1045,1053, %T A301970 1155,1173,1425,1485,1495,1575,1625,1653,1683,1771,1785,1815,1911, %U A301970 2025,2139,2145,2223,2275,2277,2295,2310,2415,2457,2465,2475,2625,2639,2695,2805,2945 %N A301970 Heinz numbers of integer partitions with more subset-products than subset-sums. %C A301970 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). A subset-sum (or subset-product) of a multiset y is any number equal to the sum (or product) of some submultiset of y. %C A301970 Numbers n such that A301957(n) > A299701(n). %e A301970 Sequence of partitions begins: (532), (642), (633), (6222), (5322), (4332), (752), (743), (33222), (862), (7322), (6422), (5332), (844), (853), (62222), (5432), (972), (8332), (53222), (963), (43322), (6333). %t A301970 Select[Range[1000],With[{ptn=If[#===1,{},Join@@Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]},Length[Union[Times@@@Subsets[ptn]]]>Length[Union[Plus@@@Subsets[ptn]]]]&] %Y A301970 Cf. A000712, A003963, A056239, A108917, A276024, A284640, A292886, A296150, A299701, A299702, A299729, A301854, A301855, A301856, A301957, A301979. %K A301970 nonn %O A301970 1,1 %A A301970 _Gus Wiseman_, Mar 29 2018