This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A301973 #5 Mar 29 2018 15:25:51 %S A301973 0,1,4,15,50,140,336,714,1380,2475,4180,6721,10374,15470,22400,31620, %T A301973 43656,59109,78660,103075,133210,170016,214544,267950,331500,406575, %U A301973 494676,597429,716590,854050,1011840,1192136,1397264,1629705,1892100,2187255,2518146,2887924,3299920,3757650,4264820 %N A301973 a(n) = (n^2 - 3*n + 6)*binomial(n+2,3)/4. %C A301973 For n > 2, a(n) is the n-th term of the partial sums of n-gonal pyramidal numbers (in other words, a(n) is the n-th 4-dimensional n-gonal number). %H A301973 <a href="/index/Ps#pyramidal_numbers">Index to sequences related to pyramidal numbers</a> %H A301973 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1). %F A301973 O.g.f.: x*(1 - 2*x + 6*x^2)/(1 - x)^6. %F A301973 E.g.f.: exp(x)*x*(24 + 24*x + 24*x^2 + 10*x^3 + x^4)/24. %F A301973 a(n) = [x^n] x*(1 - 3*x + n*x)/(1 - x)^5. %F A301973 a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). %t A301973 Table[(n^2 - 3 n + 6) Binomial[n + 2, 3]/4, {n, 0, 40}] %t A301973 nmax = 40; CoefficientList[Series[x (1 - 2 x + 6 x^2)/(1 - x)^6, {x, 0, nmax}], x] %t A301973 nmax = 40; CoefficientList[Series[Exp[x] x (24 + 24 x + 24 x^2 + 10 x^3 + x^4)/24, {x, 0, nmax}], x] Range[0, nmax]! %t A301973 Table[SeriesCoefficient[x (1 - 3 x + n x)/(1 - x)^5, {x, 0, n}], {n, 0, 40}] %t A301973 LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 1, 4, 15, 50, 140}, 41] %Y A301973 Cf. A000292, A000332, A001296, A002415, A006484, A060354, A080852, A256859, A291288 (partial sums), A292551. %K A301973 nonn,easy %O A301973 0,3 %A A301973 _Ilya Gutkovskiy_, Mar 29 2018