cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301977 a(n) is the number of distinct positive numbers whose binary digits appear in order but not necessarily as consecutive digits in the binary representation of n.

This page as a plain text file.
%I A301977 #19 Jan 26 2022 11:53:07
%S A301977 1,2,2,3,4,4,3,4,6,7,6,6,7,6,4,5,8,10,9,10,12,11,8,8,11,12,10,9,10,8,
%T A301977 5,6,10,13,12,14,17,16,12,13,18,20,17,16,18,15,10,10,15,18,16,17,20,
%U A301977 18,13,12,16,17,14,12,13,10,6,7,12,16,15,18,22,21,16,18
%N A301977 a(n) is the number of distinct positive numbers whose binary digits appear in order but not necessarily as consecutive digits in the binary representation of n.
%C A301977 This sequence has similarities with A078822; there we consider consecutive digits, here not.
%H A301977 Rémy Sigrist, <a href="/A301977/b301977.txt">Table of n, a(n) for n = 1..10000</a>
%H A301977 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%F A301977 a(2^n) = n + 1 for any n >= 0.
%F A301977 a(2^n - 1) = n for any n > 0.
%F A301977 a(2^n + k) = a(2^(n+1)-1 - k) for any n >= 0 and k=0..2^n-1.
%F A301977 a(n) >= A070939(n) for any n > 0.
%F A301977 a(n) = Sum_{k=1..n} (Stirling2(n+1,k) mod 2) (conjecture). - _Ilya Gutkovskiy_, Jul 04 2019
%e A301977 The first terms, alongside the binary representations of n and of the numbers k whose binary digits appear in order in the binary representation of k, are:
%e A301977   n  a(n)  bin(n)    bin(k)
%e A301977   -- ----  ------    ------
%e A301977    1    1       1    1
%e A301977    2    2      10    1, 10
%e A301977    3    2      11    1, 11
%e A301977    4    3     100    1, 10, 100
%e A301977    5    4     101    1, 10, 11, 101
%e A301977    6    4     110    1, 10, 11, 110
%e A301977    7    3     111    1, 11, 111
%e A301977    8    4    1000    1, 10, 100, 1000
%e A301977    9    6    1001    1, 10, 11, 100, 101, 1001
%e A301977   10    7    1010    1, 10, 11, 100, 101, 110, 1010
%e A301977   11    6    1011    1, 10, 11, 101, 111, 1011
%e A301977   12    6    1100    1, 10, 11, 100, 110, 1100
%e A301977   13    7    1101    1, 10, 11, 101, 110, 111, 1101
%e A301977   14    6    1110    1, 10, 11, 110, 111, 1110
%e A301977   15    4    1111    1, 11, 111, 1111
%e A301977   16    5   10000    1, 10, 100, 1000, 10000
%e A301977   17    8   10001    1, 10, 11, 100, 101, 1000, 1001, 10001
%e A301977   18   10   10010    1, 10, 11, 100, 101, 110, 1000, 1001, 1010, 10010
%e A301977   19    9   10011    1, 10, 11, 100, 101, 111, 1001, 1011, 10011
%e A301977   20   10   10100    1, 10, 11, 100, 101, 110, 1000, 1010, 1100, 10100
%p A301977 b:= proc(n) option remember; `if`(n=0, {0},
%p A301977       map(x-> [x, 2*x+r][], b(iquo(n, 2, 'r'))))
%p A301977     end:
%p A301977 a:= n-> nops(b(n))-1:
%p A301977 seq(a(n), n=1..72);  # _Alois P. Heinz_, Jan 26 2022
%o A301977 (PARI) a(n) = my (b=binary(n), s=Set(1)); for (i=2, #b, s = setunion(s, Set(apply(v -> 2*v+b[i], s)))); return (#s)
%Y A301977 Cf. A070939, A078822.
%K A301977 nonn,base,look
%O A301977 1,2
%A A301977 _Rémy Sigrist_, Mar 30 2018