cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301981 Euler transform of A034448.

Original entry on oeis.org

1, 1, 4, 8, 19, 37, 84, 154, 313, 581, 1109, 2001, 3696, 6518, 11637, 20215, 35173, 60007, 102404, 171960, 288286, 477586, 788527, 1289539, 2101394, 3396594, 5469267, 8747285, 13934572, 22068218, 34815513, 54640049, 85434022, 132964684, 206193983, 318414629
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 30 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; A034448 = Flatten[{1, Table[Times @@ (1 + Power @@@ FactorInteger[k]), {k, 2, nmax+1}]}]; CoefficientList[Series[Exp[Sum[Sum[A034448[[k]] * x^(j*k) / j, {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1-x^k)^A034448(k).
Conjecture: a(n) ~ exp((3*Pi*n)^(2/3)/2 - 1/2) * A^6 / (2 * 3^(5/6) * Pi^(1/3) * n^(5/6)), where A is the Glaisher-Kinkelin constant A074962.