A301995 Number of nX4 0..1 arrays with every element equal to 1, 2 or 4 horizontally or antidiagonally adjacent elements, with upper left element zero.
2, 8, 26, 74, 200, 530, 1394, 3656, 9578, 25082, 65672, 171938, 450146, 1178504, 3085370, 8077610, 21147464, 55364786, 144946898, 379475912, 993480842, 2600966618, 6809419016, 17827290434, 46672452290, 122190066440, 319897747034
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..1..1. .0..0..1..0. .0..0..1..1. .0..0..1..1. .0..0..1..1 ..0..0..0..0. .0..1..0..0. .1..1..0..0. .0..1..0..1. .0..1..0..0 ..1..1..1..1. .1..1..0..0. .0..0..0..0. .1..0..1..1. .1..1..0..0 ..0..0..1..1. .1..1..0..0. .0..0..1..1. .0..0..1..0. .1..1..0..0 ..0..0..1..1. .1..1..1..1. .1..1..0..0. .1..1..0..0. .1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A301999.
Formula
Empirical: a(n) = 4*a(n-1) -4*a(n-2) +a(n-3)
Comments