A301999 T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 2 or 4 horizontally or antidiagonally adjacent elements, with upper left element zero.
0, 1, 0, 1, 2, 0, 2, 2, 5, 0, 3, 8, 5, 13, 0, 5, 18, 26, 15, 34, 0, 8, 50, 84, 74, 48, 89, 0, 13, 128, 309, 468, 200, 155, 233, 0, 21, 338, 1108, 2036, 2856, 530, 499, 610, 0, 34, 882, 3979, 10982, 14016, 17800, 1394, 1602, 1597, 0, 55, 2312, 14314, 53440, 122232
Offset: 1
Examples
Some solutions for n=5 k=4 ..0..0..0..0. .0..0..0..0. .0..0..1..1. .0..0..1..1. .0..0..1..0 ..1..1..0..1. .1..1..0..0. .0..0..0..0. .0..1..0..0. .0..1..0..0 ..1..0..1..0. .1..1..0..1. .1..1..1..1. .1..0..1..0. .1..1..0..0 ..0..1..0..1. .1..0..1..0. .0..0..1..0. .0..1..0..1. .1..1..1..1 ..0..0..1..1. .1..1..0..0. .0..1..0..0. .1..0..1..1. .0..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..311
Formula
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 3*a(n-1) -a(n-2)
k=3: a(n) = 5*a(n-1) -7*a(n-2) +4*a(n-3)
k=4: a(n) = 4*a(n-1) -4*a(n-2) +a(n-3)
k=5: [order 11] for n>12
k=6: [order 32] for n>33
k=7: [order 52] for n>54
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = 2*a(n-1) +2*a(n-2) -a(n-3)
n=3: [order 20]
Comments